How to use the mapLimit function from async
Find comprehensive JavaScript async.mapLimit code examples handpicked from public code repositorys.
async.mapLimit is a JavaScript function that applies an asynchronous function to each element of an array with a specified concurrency limit.
367 368 369 370 371 372 373 374 375 376
/** * run promises with limit */ function promiseMapLimit({ list, func, limit = 1 }) { return new Promise((resolve, reject) => { Async.mapLimit( list, limit, async (item) => { const res = await func(item);
GitHub: iam-frankqiu/docs
11 12 13 14 15 16 17 18 19 20
const englishPath = path.join(__dirname, '..', languages.en.dir, 'content') const englishPaths = walk(englishPath) .filter(({ relativePath }) => relativePath.endsWith('.md') && !relativePath.includes('README') ) const englishPages = await mapLimit( englishPaths, FILE_READ_LIMIT, async fileData => await Page.init({ ...fileData, languageCode: languages.en.code }) )
+ 3 other calls in file
How does async.mapLimit work?
async.mapLimit works by processing an array of values in parallel with a specified concurrency limit, applying an asynchronous function to each element of the array. The function takes three arguments: the array of values to be processed, the maximum number of concurrent operations to allow, and the asynchronous function to apply to each element of the array. The asynchronous function is called with two arguments: the current element of the array and a callback function to be called when the asynchronous operation is complete. The callback function takes two arguments: an error object (if an error occurred during the asynchronous operation) and the result of the operation. async.mapLimit returns a Promise that resolves to an array of the results of each asynchronous operation. By limiting the number of concurrent operations, async.mapLimit provides a way to process large arrays of data without overwhelming the system or exceeding resource limits. This makes it useful for a variety of tasks, such as making multiple API requests in parallel or processing large datasets asynchronously.
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
} async.times = _times(async.map); async.timesSeries = _times(async.mapSeries); async.timesLimit = function (count, limit, iterator, callback) { return async.mapLimit(_range(count), limit, iterator, callback); }; async.seq = function (/* functions... */) { const fns = arguments;
+ 14 other calls in file
GitHub: HomieOmie/nodebb-temp
164 165 166 167 168 169 170 171 172 173 174
}); }); }; actions.minifyJS = async function minifyJS(data) { const filesToMinify = await async.mapLimit(data.files, 1000, async (fileObj) => { const source = await fs.promises.readFile(fileObj.srcPath, 'utf8'); return { srcPath: fileObj.srcPath, filename: fileObj.filename,
+ 3 other calls in file
Ai Example
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
const async = require("async"); const request = require("request"); // An array of URLs to fetch const urls = [ "https://www.example.com", "https://www.google.com", "https://www.github.com", "https://www.twitter.com", "https://www.linkedin.com", ]; // A function to fetch a URL and return its contents function fetchUrl(url, callback) { request(url, (err, response, body) => { if (err) { return callback(err); } callback(null, body); }); } // Use async.mapLimit to fetch the URLs with a concurrency limit of 3 async.mapLimit(urls, 3, fetchUrl, (err, results) => { if (err) { return console.error(err); } console.log(results); });
In this example, we use async.mapLimit to fetch the contents of several URLs in parallel, limiting the number of concurrent requests to 3. We first define an array of URLs to fetch and a function to fetch each URL using the request module. We then use async.mapLimit to apply the fetchUrl function to each URL in the urls array, limiting the number of concurrent operations to 3. Finally, we log the results of each asynchronous operation to the console. By using async.mapLimit, we can efficiently process large arrays of data in parallel, without overwhelming the system or exceeding resource limits.
245 246 247 248 249 250 251 252 253 254
_sortFileList(listToSort, rootDirectory, callback) { if (callback == null) { callback = function () {} } return async.mapLimit( listToSort, 5, (filePath, cb) => fs.stat(Path.join(rootDirectory, filePath), function (err, stat) {
GitHub: weirenren/pashanhu
573 574 575 576 577 578 579 580 581 582 583 584
if (err) { console.log(err); } else { let download_success_size = 0; async.mapLimit(imgHrefArray, imgHrefArray.length, function (item, callback) { // delay 的值在 2000 以内,是个随机的整数 var delay = randomNum(1500, 8000);
7 8 9 10 11 12 13 14 15 16
let positions = await getPositions(); positions = positions.filter(p => !p.wouldBeDayTrade && (ignoreDontSell || !dontSell.includes(p.ticker))); if (noBuyMult) { positions = positions.filter(({ buyMult }) => !buyMult || buyMult <= 0); } return mapLimit( positions, 6, async position => { try {
async.parallel is the most popular function in async (1226 examples)