How to use the mapLimit function from async

Find comprehensive JavaScript async.mapLimit code examples handpicked from public code repositorys.

async.mapLimit is a JavaScript function that applies an asynchronous function to each element of an array with a specified concurrency limit.

367
368
369
370
371
372
373
374
375
376
/**
 * run promises with limit
 */
function promiseMapLimit({ list, func, limit = 1 }) {
  return new Promise((resolve, reject) => {
    Async.mapLimit(
      list,
      limit,
      async (item) => {
        const res = await func(item);
fork icon93
star icon93
watch icon0

11
12
13
14
15
16
17
18
19
20
const englishPath = path.join(__dirname, '..', languages.en.dir, 'content')
const englishPaths = walk(englishPath)
  .filter(({ relativePath }) =>
    relativePath.endsWith('.md') && !relativePath.includes('README')
  )
const englishPages = await mapLimit(
  englishPaths,
  FILE_READ_LIMIT,
  async fileData => await Page.init({ ...fileData, languageCode: languages.en.code })
)
fork icon0
star icon2
watch icon1

+ 3 other calls in file

How does async.mapLimit work?

async.mapLimit works by processing an array of values in parallel with a specified concurrency limit, applying an asynchronous function to each element of the array. The function takes three arguments: the array of values to be processed, the maximum number of concurrent operations to allow, and the asynchronous function to apply to each element of the array. The asynchronous function is called with two arguments: the current element of the array and a callback function to be called when the asynchronous operation is complete. The callback function takes two arguments: an error object (if an error occurred during the asynchronous operation) and the result of the operation. async.mapLimit returns a Promise that resolves to an array of the results of each asynchronous operation. By limiting the number of concurrent operations, async.mapLimit provides a way to process large arrays of data without overwhelming the system or exceeding resource limits. This makes it useful for a variety of tasks, such as making multiple API requests in parallel or processing large datasets asynchronously.

2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
}

async.times = _times(async.map);
async.timesSeries = _times(async.mapSeries);
async.timesLimit = function (count, limit, iterator, callback) {
	return async.mapLimit(_range(count), limit, iterator, callback);
};

async.seq = function (/* functions... */) {
	const fns = arguments;
fork icon0
star icon0
watch icon2

+ 14 other calls in file

164
165
166
167
168
169
170
171
172
173
174
        });
    });
};


actions.minifyJS = async function minifyJS(data) {
    const filesToMinify = await async.mapLimit(data.files, 1000, async (fileObj) => {
        const source = await fs.promises.readFile(fileObj.srcPath, 'utf8');
        return {
            srcPath: fileObj.srcPath,
            filename: fileObj.filename,
fork icon0
star icon0
watch icon1

+ 3 other calls in file

Ai Example

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
const async = require("async");
const request = require("request");

// An array of URLs to fetch
const urls = [
  "https://www.example.com",
  "https://www.google.com",
  "https://www.github.com",
  "https://www.twitter.com",
  "https://www.linkedin.com",
];

// A function to fetch a URL and return its contents
function fetchUrl(url, callback) {
  request(url, (err, response, body) => {
    if (err) {
      return callback(err);
    }
    callback(null, body);
  });
}

// Use async.mapLimit to fetch the URLs with a concurrency limit of 3
async.mapLimit(urls, 3, fetchUrl, (err, results) => {
  if (err) {
    return console.error(err);
  }
  console.log(results);
});

In this example, we use async.mapLimit to fetch the contents of several URLs in parallel, limiting the number of concurrent requests to 3. We first define an array of URLs to fetch and a function to fetch each URL using the request module. We then use async.mapLimit to apply the fetchUrl function to each URL in the urls array, limiting the number of concurrent operations to 3. Finally, we log the results of each asynchronous operation to the console. By using async.mapLimit, we can efficiently process large arrays of data in parallel, without overwhelming the system or exceeding resource limits.

245
246
247
248
249
250
251
252
253
254

_sortFileList(listToSort, rootDirectory, callback) {
  if (callback == null) {
    callback = function () {}
  }
  return async.mapLimit(
    listToSort,
    5,
    (filePath, cb) =>
      fs.stat(Path.join(rootDirectory, filePath), function (err, stat) {
fork icon0
star icon0
watch icon202

573
574
575
576
577
578
579
580
581
582
583
584
                if (err) {
                    console.log(err);
                } else {


                    let download_success_size = 0;
                    async.mapLimit(imgHrefArray, imgHrefArray.length, function (item, callback) {


// delay 的值在 2000 以内,是个随机的整数
                        var delay = randomNum(1500, 8000);

fork icon0
star icon0
watch icon1

7
8
9
10
11
12
13
14
15
16
let positions = await getPositions();
positions = positions.filter(p => !p.wouldBeDayTrade && (ignoreDontSell || !dontSell.includes(p.ticker)));
if (noBuyMult) {
    positions = positions.filter(({ buyMult }) => !buyMult || buyMult <= 0);
}
return mapLimit(
    positions,
    6,
    async position => {
        try {
fork icon0
star icon0
watch icon0