How to use the chunk function from lodash
Find comprehensive JavaScript lodash.chunk code examples handpicked from public code repositorys.
lodash.chunk is a function in the Lodash library that splits an array into smaller arrays of a specified size.
GitHub: thumbsup/thumbsup
135 136 137 138 139 140 141 142 143 144
} else if (options.albumPreviews === 'spread') { if (potential.length < PREVIEW_COUNT) { this.previews = _.slice(potential, 0, PREVIEW_COUNT) } else { const bucketSize = Math.floor(potential.length / PREVIEW_COUNT) const buckets = _.chunk(potential, bucketSize) this.previews = buckets.slice(0, PREVIEW_COUNT).map(b => b[0]) } } else { throw new Error(`Unsupported preview type: ${options.albumPreviews}`)
+ 4 other calls in file
47 48 49 50 51 52 53 54 55 56
module.exports.capitalize = _.capitalize; module.exports.castArray = _.castArray; module.exports.cat = _.cat; module.exports.ceil = _.ceil; module.exports.chain = _.chain; module.exports.chunk = _.chunk; module.exports.chunkAll = _.chunkAll; module.exports.chunkContrib = _.chunkContrib; module.exports.clamp = _.clamp; module.exports.clone = _.clone;
+ 92 other calls in file
How does lodash.chunk work?
lodash.chunk
is a function in the Lodash library that splits an array into smaller arrays of a specified size.
When called with an array and a size argument, lodash.chunk
creates a new array of subarrays, each containing up to size
elements from the original array. If the original array does not divide evenly into subarrays of size size
, the last subarray will contain the remaining elements.
For example, if we have an array [1, 2, 3, 4, 5]
, and we call lodash.chunk(arr, 2)
, the resulting array would be [[1, 2], [3, 4], [5]]
. If we called lodash.chunk(arr, 3)
, the resulting array would be [[1, 2, 3], [4, 5]]
.
The lodash.chunk
function can be useful for breaking up large arrays into smaller pieces for processing or displaying data, such as in pagination or table displays.
lodash.chunk
also has several optional arguments that allow for more fine-grained control over the resulting subarrays, such as the ability to pad the last subarray with a specified value, or to omit subarrays with empty values.
For example, we could call lodash.chunk
with a third argument of null
to pad the last subarray with null
values if necessary:
javascriptconst arr = [1, 2, 3, 4, 5];
const chunked = _.chunk(arr, 3, null);
// chunked = [[1, 2, 3], [4, 5, null]]
Or, we could call lodash.chunk
with a third argument of false
to omit any subarrays with empty values:
javascriptconst arr = [1, 2, 3, 4, 5];
const chunked = _.chunk(arr, 3, false);
// chunked = [[1, 2, 3], [4, 5]]
In both cases, the lodash.chunk
function provides greater control over the resulting subarrays, allowing us to tailor the output to our specific use case.
289 290 291 292 293 294 295 296 297 298 299 300 301
function batchEvents(eventsChunk) { const batchedResponseList = []; // arrayChunks = [[e1,e2,e3,..batchSize],[e1,e2,e3,..batchSize]..] const arrayChunks = _.chunk(eventsChunk, MAX_BATCH_SIZE); arrayChunks.forEach((chunk) => { const batchEventResponse = generateBatchedPayloadForArray(chunk); batchedResponseList.push(
+ 2 other calls in file
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
eventsNotBatched = false; } } if (batchedEvents.length === 0 || eventsNotBatched) { if (transformedMessage.length > maxBatchSize) { transformedMessage = _.chunk(transformedMessage, maxBatchSize); } batchedEvents.push({ events: transformedMessage, metadata: [transformedInput.metadata],
Ai Example
1 2 3 4 5 6 7
const _ = require("lodash"); const arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; const chunked = _.chunk(arr, 3); console.log(chunked); // Output: [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]]
In this example, we have an array arr containing the numbers 1 through 10, and we use _.chunk(arr, 3) to split the array into smaller subarrays containing 3 elements each. The resulting chunked array contains four subarrays, with the last subarray containing only one element since the original array did not divide evenly into subarrays of size 3. We could use this technique, for example, to display the elements of the original array in groups of 3 in a web page or user interface, or to process the elements of the array in smaller chunks for performance reasons.
186 187 188 189 190 191 192 193 194 195
// event_set_id2: [...events] // } const groupedEventChunks = _.groupBy(eventChunksArray, (event) => event.message.event_set_id); Object.keys(groupedEventChunks).forEach((eventSetId) => { // eventChunks = [[e1,e2,e3,..batchSize],[e1,e2,e3,..batchSize]..] const eventChunks = _.chunk(groupedEventChunks[eventSetId], MAX_BATCH_SIZE); eventChunks.forEach((chunk) => { const batchEventResponse = generateBatch(eventSetId, chunk); batchedResponseList.push( getSuccessRespEvents(
+ 4 other calls in file
487 488 489 490 491 492 493 494 495 496
// batching identifyArrayChunks let identifyBatchedResponseList = []; if (identifyEventChunks.length > 0) { // arrayChunks = [[e1,e2,e3,..batchSize],[e1,e2,e3,..batchSize]..] // transformed payload of (n) batch size const identifyArrayChunks = _.chunk(identifyEventChunks, IDENTIFY_MAX_BATCH_SIZE); identifyBatchedResponseList = batchEvents(identifyArrayChunks); } // batching TrackArrayChunks let trackBatchedResponseList = [];
GitHub: ntkhang03/Goat-Bot-V2
330 331 332 333 334 335 336 337 338 339 340
fullPath = fullPath.replace(process.cwd(), ""); return fullPath; } function splitPage(arr, limit) { const allPage = _.chunk(arr, limit); return { totalPage: allPage.length, allPage };
+ 4 other calls in file
108 109 110 111 112 113 114 115 116 117 118 119 120
const process = (event) => processEvent(event.message, event.destination); function batchEvents(eventsChunk) { const batchedResponseList = []; const arrayChunks = _.chunk(eventsChunk, IDENTIFY_MAX_BATCH_SIZE); // list of chunks [ [..], [..] ] arrayChunks.forEach((chunk) => { const metadatas = [];
992 993 994 995 996 997 998 999 1000 1001
}; const pageReturn = []; if (items.length > 0) { const pagedEntities = _.chunk(items, perPage); for (let pageNum = 0; pageNum < pagedEntities.length; pageNum++) { let pagedPage = { ...page }; if (pageNum > 0) {
GitHub: mrijk/speculaas
30 31 32 33 34 35 36 37 38 39
} return invalidString; } function cat(...predicates) { const pairs = _.chunk(predicates, 2); return { op: 'cat', conform: _.partial(_conform, pairs),
GitHub: mdmarufsarker/lodash
0 1 2 3 4 5 6 7 8 9 10 11 12 13
const _ = require('lodash'); // Array const chunk = _.chunk(['a', 'b', 'c', 'd'], 2); console.log(chunk); // => [['a', 'b'], ['c', 'd']] const compact = _.compact([0, 1, false, 2, '', 3]); console.log(compact); // => [1, 2, 3]
+ 15 other calls in file
100 101 102 103 104 105 106 107 108 109
.absoluteValue() .toString() ) ) } const chunks = chunk(orders, 15).map(c => [0, 'ox_multi', null, c]) return chunks }, autoMarketMake: async steps => {
221 222 223 224 225 226 227 228 229 230
const repository = this return new Promise(function (resolve, reject) { requestItems = requestItems || [] retries = (typeof retries === 'undefined') ? 1 : retries let unprocessed = [] const batches = _.chunk(requestItems, 25) batches.forEach(function (batch) { const params = { RequestItems: {} }
+ 2 other calls in file
GitHub: Pedrolian/zoho-crm
187 188 189 190 191 192 193 194 195 196
* @param {Object} options Extra options allowed to send with request * @returns {Promise} */ updateRecords(moduleName, data, callback, options) { options = options || {}; const data_chunks = _.chunk(data, 100); let counter = 0; let response_array = []; return new Promise((resolve, reject) => { data_chunks.map((row) => {
+ 24 other calls in file
355 356 357 358 359 360 361 362 363 364
const paramsArray = []; // We split participants up in chunks of 20 since the MS Graph API seems to struggle with longer search queries if (params.participants && params.participants.length > 0) { const participantsChunks = _.chunk(params.participants, 20); participantsChunks.forEach((participants) => { paramsArray.push({ ...params, participants });
+ 2 other calls in file
GitHub: harvestfi/harvest-api
246 247 248 249 250 251 252 253 254
} console.log('-- Done getting BSC pool data --\n') console.log('\n-- Getting MATIC pool data --') const maticPoolBatches = chunk( pools.filter(pool => pool.chain === CHAIN_TYPES.MATIC), GET_POOL_DATA_BATCH_SIZE, )
+ 39 other calls in file
340 341 342 343 344 345 346 347 348 349
); // init new base type, set whitelist to match controller await setup.setDefaults({ nameOverride: nameBase }); const wlChunked = _.chunk(controllerWhitelist, 50); for (let chunk of wlChunked) { //try { await CONST.web3_tx( 'whitelistMany',
40 41 42 43 44 45 46 47 48 49 50
* @private * @param {string[]} funcNames The function names. * @returns {string} Returns the function list string. */ function toFuncList(funcNames) { let chunks = _.chunk(funcNames.slice().sort(), 5); let lastChunk = _.last(chunks); const lastName = lastChunk ? lastChunk.pop() : undefined; chunks = _.reject(chunks, _.isEmpty);
+ 4 other calls in file
150 151 152 153 154 155 156 157 158 159
if (listOfBodies.length === 0) { // dont send message apiCalled.resolve({ resolve: [], reject: [] }) return apiCalled.promise } const batchesOfBodies = _.chunk(listOfBodies, __constants.CHUNK_SIZE_FOR_SEND_SUCCESS_OPTIN_MESSAGE) qalllib.qASyncWithBatch(sendOptinMessage, batchesOfBodies, __constants.BATCH_SIZE_FOR_SEND_SUCCESS_OPTIN_MESSAGE, authToken) .then(data => { if (data.reject.length) { return apiCalled.reject(data.reject[0])
+ 4 other calls in file
28 29 30 31 32 33 34 35 36 37 38 39
const brightcoveVideosDataDir = FILE_DIR_PATH const cache = {}; const functions = {}; function divideArrayInSubArrays(arr, subArrayLength) { return _.chunk(arr, subArrayLength); } function createDirectory() { if (!fs.existsSync(brightcoveVideosDataDir)) {
+ 12 other calls in file
lodash.get is the most popular function in lodash (7670 examples)