How to use the cos function from mathjs
Find comprehensive JavaScript mathjs.cos code examples handpicked from public code repositorys.
mathjs.cos is a function in the Math.js library used to calculate the cosine of a number in radians.
4 5 6 7 8 9 10 11 12 13
console.log(math.tan(0.5)); console.log(math.sin(0.5) / math.cos(0.5)); console.log(math.cot(2)); console.log(1 / math.tan(2)); console.log(math.sec(2)); console.log(1 / math.cos(2)); console.log(math.csc(2)); console.log(1 / math.sin(2)); console.log(math.asin(0.5)); console.log(math.atan(0.5));
+ 11 other calls in file
125 126 127 128 129 130 131 132 133 134
return erf_large(z); } const K = math.exp(-z.re*z.re)/Math.PI; const q = 4*z.re*z.re; const a = math.cos(2*z.re*z.im); const b = math.sin(2*z.re*z.im); const series = [math.erf(z.re), cmul(K/(2*z.re), math.complex(1-a, b))]; for (let k = 1; k < 65; k++) {
+ 3 other calls in file
How does mathjs.cos work?
mathjs.cos is a function provided by the Math.js library used to calculate the cosine of a number in radians. When mathjs.cos is called, it takes as input a number representing an angle in radians. It then returns the cosine of that angle as a number. The cos function is part of the larger family of trigonometric functions, which relate the angles and sides of triangles. In particular, the cosine function relates the adjacent and hypotenuse sides of a right triangle. In JavaScript, angles are typically measured in radians, which are defined as the angle subtended by an arc of a circle equal in length to the radius of the circle. One complete revolution around a circle corresponds to an angle of 2π radians. The mathjs.cos function can be used in a variety of applications, such as computer graphics, physics, and engineering. By providing an easy-to-use interface for calculating cosine values, Math.js makes it easier to perform mathematical operations in JavaScript.
49 50 51 52 53 54 55 56 57 58
sphereCarthesianCoordinates() { const sphereCoord = this.sphereAngleCoordinates(); const ax = math.sin(sphereCoord.teta) * math.cos(sphereCoord.phi); const ay = math.sin(sphereCoord.teta) * math.sin(sphereCoord.phi); const az = math.cos(sphereCoord.teta); return { x: ax, y: ay,
105 106 107 108 109 110 111 112 113
}, gauss: function gauss(slength) { var _samples_length = slength !== undefined ? Number(slength) : defaults.slength; var _samples = new Array(_samples_length).fill(0).map(function (x, i) { return math.cos(2 * math.PI * math.random()) * math.sqrt(-2 * math.log(math.random())); }); return _samples; }
Ai Example
1 2 3 4 5
const math = require("mathjs"); const x = math.cos(0); // Returns 1 const y = math.cos(math.pi); // Returns -1 const z = math.cos(math.pi / 4); // Returns approximately 0.7071
In this example, we first import the mathjs library. We then call math.cos three times to calculate the cosine of different angles in radians. In the first call to cos, we pass in 0 as the angle, which corresponds to a cosine of 1. In the second call to cos, we pass in pi as the angle, which corresponds to a cosine of -1. Finally, in the third call to cos, we pass in pi / 4 as the angle, which corresponds to a cosine of approximately 0.7071. By using mathjs.cos, we can easily calculate the cosine of angles in radians in our JavaScript applications, making it easier to perform mathematical operations.
100 101 102 103 104 105 106 107 108 109
} } function isWithinMiles(origin, other, dist_miles) { num = math.cos( toRads(origin.lat) ) * math.cos( toRads( other.lat ) ) * math.cos( toRads( other.lng ) - toRads(origin.lng) ) + math.sin( toRads(origin.lat) ) * math.sin( toRads( other.lat ) ) distance = ( 3959 * math.acos( num ) ) // if(distance <= dist_miles){ // console.log(other.lat + ', ' + other.lng)
36 37 38 39 40 41 42 43 44 45
width, height, depth, orientation, { x: originX + (width / 2) * cos((orientation / 180) * Math.PI), y: originY + (width / 2) * sin((orientation / 180) * Math.PI) }, reality, debug
+ 13 other calls in file
719 720 721 722 723 724 725 726 727 728
main(){ let find = "**Find:** "; let answer = "**Answer:**\n"; // If user has distance, only thing to have is to get is time // First find vx and vy this.vx.actual = multiply(this.vi, cos(this.angle)) this.vx.rounded = clone(this.vx.actual); this.vx.rounded.value = SigFig(this.vx.rounded.value, this.sf) this.equationInLatex.push(`v_{x} = v_{i}cos(\\theta) \\implies ${this.vi.toString()} \\cdot cos(${this.angle.toString()}) = ${this.vx.rounded.toString()}`) find += "Horizontal Velocity (vx), "
GitHub: mljs/calculus
26 27 28 29 30 31 32 33 34
result.should.be.approximately(-0.717344150, 10e-7); }); it('1st Derivate O(h^4)', function () { var x = [0.78, 0.79, 0.8, 0.81, 0.82]; var y = math.cos(x); var result = Derivate.derivate(x, y, 2, 1, 0.01, 4); result.should.be.approximately(-0.717356108, 10e-7); });
+ 111 other calls in file
GitHub: brin-eris/basic-bots
148 149 150 151 152 153 154 155 156
buildFunctionsArray(){ let sin = function(x){ return Mathjs.sin(x); } let cos = function(x){ return Mathjs.cos(x); } let sigmoidSuck = function(x){ let result = 1.0/(1.0 + Mathjs.exp(-1 * x));
+ 7 other calls in file
GitHub: geofree-tze/HomophilyHub
2746 2747 2748 2749 2750 2751 2752 2753 2754
// Haversine formula let dlon = lon2 - lon1; let dlat = lat2 - lat1; let a = mathjs.pow(mathjs.sin(dlat / 2), 2) + mathjs.cos(lat1) * mathjs.cos(lat2) * mathjs.pow(mathjs.sin(dlon / 2), 2); let c = 2 * mathjs.asin(mathjs.sqrt(a));
+ 2 other calls in file
118 119 120 121 122 123 124 125 126 127 128
} function epicycloid(r0, k, theta) { const kp1 = k + 1; return [ r0 * kp1 * math.cos(theta) - r0 * math.cos(kp1 * theta), r0 * kp1 * math.sin(theta) - r0 * math.sin(kp1 * theta), ]; }
+ 6 other calls in file
GitHub: kukawski/mathjs
79 80 81 82 83 84 85 86 87 88
math.sqrt(c); // 2 - i math.sqrt(-4); // 2i var f = math.unit(60, 'deg'); // 60 deg var g = math.cos(f); // 0.5 ``` ## Parser
+ 15 other calls in file
80 81 82 83 84 85 86 87 88 89
// invert magnetometer input according to iphone axis m_y = -m_y; m_z = -m_z; // build formula for yaw (accelerometer + magnetometer) nom = cos(phi_hat)*m_x-sin(phi_hat)*m_z; denom = cos(theta_hat)*m_y+sin(phi_hat)*sin(theta_hat)*m_x+cos(phi_hat)*sin(theta_hat)*m_z; // estimated yaw psi_hat = psi_old + q * dt;
+ 7 other calls in file
mathjs.evaluate is the most popular function in mathjs (87200 examples)