How to use the divide function from mathjs
Find comprehensive JavaScript mathjs.divide code examples handpicked from public code repositorys.
GitHub: hollaex/hollaex-kit
30 31 32 33 34 35 36 37 38 39
} else if (decimals > 0) { const multipliedNumber = math.multiply( math.fraction(number), math.pow(10, decimals) ); const dividedNumber = math.divide( math.floor(multipliedNumber), math.pow(10, decimals) ); return math.number(dividedNumber);
211
236
0
+ 3 other calls in file
594 595 596 597 598 599 600 601 602 603 604
/** Calculates how many seconds it will take for the algorithm to finish multiplied * by 10. Multiplied by 10 to prevent rounding errors. */ function calculateRunningTime(cities) { var factorialTemp = Mathjs.factorial(cities - 1); var numPaths = Mathjs.divide(factorialTemp, 2); // The number of seconds is numPaths / 10 but we are now multiplying by 10 to prevent // rounding errors so return numPaths. This will be divided by 10 in calculateTimeUnits() when we // divide seconds by secondsInUnitOfTime (both are multiplied by 10).
75
325
0
+ 2 other calls in file
GitHub: hollaex/hollaex-kit
981 982 983 984 985 986 987 988 989
'generateOrderFeeData', 'discount percentage', opts.discount ); const discountToBigNum = math.divide( math.bignumber(opts.discount), math.bignumber(100) );
206
234
14
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
var eigen = [0, 0]; var x = math.add(M[0][0], M[1][1]); eigen[0] = math.divide(math.add(x, math.sqrt( math.add(math.multiply(math.multiply(4, M[0][1]), M[1][0]), math.pow( math.subtract(M[0][0], M[1][1]), 2)))), 2); eigen[1] = math.divide(math.subtract(x, math.sqrt( math.add(math.multiply(math.multiply(4, M[0][1]), M[1][0]), math.pow( math.subtract(M[0][0], M[1][1]), 2)))), 2); return eigen; };
43
207
14
+ 315 other calls in file
5 6 7 8 9 10 11 12 13 14
const cadd = math.sum; const csub = math.subtract; const cdiv = math.divide; const cmul = math.multiply; const cmul_i = z => math.multiply(z, I); const creciprocal = z => math.divide(1, z); const csin = math.sin; const cexp = math.exp; const clog = math.log; const csqrt = math.sqrt;
8
29
3
+ 11 other calls in file
29 30 31 32 33 34 35 36 37 38
sub: math.subtract, neg: math.unaryMinus, mul: math.multiply, div: math.divide, mod, reciprocal: z => math.divide(1, z), component_mul: (z, alpha) => math.complex(alpha*z.re, alpha*z.im), component_mul_prelog: (z, alpha) => math.complex(math.exp(alpha)*z.re, math.exp(alpha)*z.im), real: math.re, imag: math.im,
8
29
3
+ 6 other calls in file
GitHub: ellis/roboliq
170 171 172 173 174 175 176 177 178 179
else if (math.equal(valueGE, targetValue)) { item.volume = volumeGE; } else { const d = math.subtract(valueGE, valueLE); const p = math.divide(math.subtract(targetValue, valueLE), d); // console.log({d, p}) // console.log(math.multiply(math.subtract(1, p), volumeLE)) // console.log(math.multiply(p, volumeGE)) item.volume = math.add(math.multiply(math.subtract(1, p), volumeLE), math.multiply(p, volumeGE));
0
9
3
21 22 23 24 25 26 27 28 29
}; getBz() { const h=10*this.r2, z=this.z1, omega=maths.dotMultiply(this.f, (2*Math.PI)), wireTurnsDensity=this.wireTurn*this.cur/((this.r2-this.r1)*(this.z2-this.z1)); const coef=Math.PI*4.0e-7*wireTurnsDensity; let q = maths.divide(J1root.slice(0,this.ns+1), h); let eqz_ = maths.subtract(maths.exp(maths.dotMultiply(q, -1*(this.z1-z))), maths.exp(maths.dotMultiply(q, -1*(this.z2-z)))); let eqz = maths.subtract(maths.exp(maths.dotMultiply(q, -1*(this.z1+z))), maths.exp(maths.dotMultiply(q, -1*(this.z2+z))));
2
3
0
GitHub: jly36963/notes
34 35 36 37 38 39 40 41 42 43
// arithmetic math.add(a, b); // add math.cube(a); // cube math.cbrt(8); // cube root math.divide(a, b); // divide math.exp(8) // exponent (e ** x) math.log(a) // ln math.log(a, 2) // log base 2 math.mod(a, b) // modulus (remainder)
0
3
0
+ 6 other calls in file
1108 1109 1110 1111 1112 1113 1114 1115 1116
} this.#values = this.#applyPrecision(dividedValues, this.#precision); if (signal.units.values != "-") { let dividedUnit = mathjs.divide(mathjs.unit(this.units.values), mathjs.unit(signal.units.values)); this.#units.values = dividedUnit.toString(); } }
0
3
0
+ 3 other calls in file
GitHub: coder0987/Taroky
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
return 1 / (1 + Math.exp(-z)); } function sigmoidMatrix(m) { //Assumes input to be an N x 1 matrix return math.divide(1, math.add(1, math.map(math.exp, math.subtract(0,m)))); } function AI(seed, mutate) { if (seed) {
1
2
0
+ 6 other calls in file
165 166 167 168 169 170 171 172 173 174
gamma = gamma_t } var D = math.flatten(math.multiply(-2, math.subtract(high_config.points, low_config.points))) var h_grad = math.flatten(high_config.status.energy_grad) var G = math.divide(h_grad, math.norm(h_grad)) if (edge_constrains_pairs.length === 0) { update_config_naive(high_config, D, G, learning_rate) } else { gamma = update_config_with_constrains(high_config, length_const, D, G,
1
1
7
GitHub: mljs/calculus
33 34 35 36 37 38 39 40 41 42
* @param {Number} M - Number of partitions to calculate the integral. * @return {Number|BigNumber} integral - Result of the integral by the compose trapezium rule * */ trapezoidalRule : function(f, a, b, M) { var h = math.divide(math.add(b, -a), M); var sum = 0; for(var k = 1; k < M; ++k) { var x = math.add(a, math.multiply(h, k)); sum = math.add(sum, f(x));
0
1
13
+ 51 other calls in file
18 19 20 21 22 23 24 25 26 27
linspace: function(start, end, n, inclusive) { //Set defaults n = n || 50; inclusive = inclusive !== undefined ? inclusive : true; var step = math.divide(math.subtract(end, start), inclusive ? n-1 : n); var result = new Array(n); for (var i = 0; i < n; ++i) { result[i] = start + i * step; }
1
0
15
GitHub: smnikzad91/byBit
46 47 48 49 50 51 52 53 54 55
let { maxLeverage } = await bybit.getIncrements(symbol) let params = await this.getLastParam(symbol, timeframes[interval], 120) if(params.status){ let elementPrice = params[element] if(condition == "below"){ if(smallerEq(parseFloat(lastPrice), add(parseFloat(elementPrice), divide(multiply(parseFloat(buffer), parseFloat(elementPrice)), 100)))){ await Ichimoku.findByIdAndDelete(_id) let positionInfo = await kline.calculatePositionParameters(symbol, "buy") let { callbackRate, stopLossStopPrice, stopLossLimitPrice, activationPrice, highPercent, lowPercent, longR2R, shortR2R } = positionInfo console.log(`${symbol} is ${condition} ${element} ${timeframes[interval]} price: ${lastPrice} buffer: ${buffer} ${type}\n stop:${stopLossStopPrice}, limit: ${stopLossLimitPrice}, activationPrice: ${activationPrice} callbackRate: ${callbackRate} low: ${lowPercent} shortR2R: ${longR2R}`)
1
0
0
+ 7 other calls in file
GitHub: smnikzad91/byBit
437 438 439 440 441 442 443 444 445 446 447
exports.setTrailingStop = async (symbol, side, callbackRate) => { let { pricePercision } = await this.getIncrements(symbol) let { lastPrice } = await this.getLastPrice(symbol) let callbackPrice; callbackPrice = divide(multiply(lastPrice, callbackRate), 100).toFixed(pricePercision) let params = { side, symbol, trailing_stop: callbackPrice, timestamp: Date.now().toString(), api_key : apiKey,
1
0
0
+ 3 other calls in file
GitHub: smnikzad91/byBit
17 18 19 20 21 22 23 24 25 26
exports.closeType = async ({oArray, cArray, hArray, lArray}) => { let closeType = [], bodyPercentArray=[], highShadowPercentArray=[], lowShadowPercentArray=[], klineDistance, bodyDistance, highShadowDistance, lowShadowDistance, bodyPercent, highShadowPercent, lowShadowPercent; let step; cArray.forEach((close, index) => { let klineDistance = subtract(hArray[index], lArray[index]) step = divide(klineDistance, 3); if(largerEq(close, lArray[index]) && smaller(close, add(lArray[index], step))){ closeType.push("lowClose") }else if(largerEq(close, add(lArray[index], step)) && smaller(close, subtract(hArray[index], step))){ closeType.push("midClose")
1
0
0
+ 35 other calls in file
14 15 16 17 18 19 20 21 22 23
math.config(config); const bignumber = math.bignumber; const matrix = math.matrix; //const TRIANGLE_UNIT_HEIGHT = math.divide(math.sqrt(bignumber("3")), bignumber("2")); const GRADIENTS = { major_diag: math.tan(math.unit(120, "deg")), anti_diag: math.tan(math.unit(-120, "deg")),
1
0
1
+ 3 other calls in file
185 186 187 188 189 190 191 192 193 194
// console.log(this.finalChargeIdentical.toString()) } getElectricForceMagnitudeBefore() { // F_{e} = k\\frac{\\abs{q_{1}q_{2}}}{r^{2}} this.electricForceMagnitudeBefore = (multiply(this.coulombConstant, divide(abs(multiply(this.parsedCharges[0].convertedUnitCharge, this.parsedCharges[1].convertedUnitCharge)), square(this.distance)))).to('N') this.electricForceMagnitudeBeforeLatex = `F_{e} = k\\frac{| q_{1}q_{2} |}{r^{2}} \\rightarrow ${this.coulombConstant.toString()}\\frac{|${this.parsedCharges[0].convertedUnitCharge.toString()}\\times${this.parsedCharges[1].convertedUnitCharge.toString()}|}{(${this.distance.toString()})^{2}} = \`${this.electricForceMagnitudeBefore.toString()}\`` // console.log(this.electricForceMagnitudeBefore.to('N').toString()) // console.log(this.electricForceMagnitudeBeforeLatex) }
0
1
0
+ 2 other calls in file
44 45 46 47 48 49 50 51 52 53
this.height.actual = divide(subtract(square(this.finalVelocity.actual), square(this.initialVelocity.actual)), multiply(2, gravity)); this.height.rounded = clone(this.height.actual); this.height.rounded.value = SigFig(this.height.rounded.value, this.roundToSigFig) this.equationInLatex.push(`d = \\frac{{v_{f}}^{2} - {v_{i}}^{2}}{2g} \\implies \\frac{(${this.finalVelocity.actual.toString()})^{2} - (${this.initialVelocity.actual.toString()})^{2}}{2(${gravity.toString()})} = ${this.height.rounded.toString()}`) // Find the time use the formula t = vf - vi / g this.time.actual = divide(subtract(this.finalVelocity.actual, this.initialVelocity.actual), gravity); this.time.rounded = clone(this.time.actual); this.time.rounded.value = SigFig(this.time.rounded.value, this.roundToSigFig) this.equationInLatex.push(`t = \\frac{v_{f} - v_{i}}{g} \\implies \\frac{${this.finalVelocity.actual.toString()} - ${this.initialVelocity.actual.toString()}}{${gravity.toString()}} = ${this.time.rounded.toString()}`) this.givenInfo = `
0
1
0
+ 10 other calls in file
mathjs.evaluate is the most popular function in mathjs (87200 examples)