How to use the dotDivide function from mathjs
Find comprehensive JavaScript mathjs.dotDivide code examples handpicked from public code repositorys.
66 67 68 69 70 71 72 73 74
// Vector of ranks for the ith node, scaled between [0, 1] let v = math.ones(N, 1); // Normalize v = math.dotDivide(v, N); // Initial solution let lastV = math.zeros(N, 1);
4
5
3
+ 3 other calls in file
30 31 32 33 34 35 36 37 38 39
}; _exports.normalizeColumns = function normalizeColumns(A) { var colSums = this.colSum(A); var colSumMatrix = this.repmat(colSums, A.size()[0]); var newMatrix = math.dotDivide(A, colSumMatrix); return newMatrix; }; _exports.inflate = function inflate(A, factor) {
2
6
2
28 29 30 31 32 33 34 35 36 37
}; exports.normalizeColumns = function normalizeColumns(A) { const colSums = this.colSum(A); const colSumMatrix = this.repmat(colSums, A.size()[0]); const newMatrix = math.dotDivide(A, colSumMatrix); return newMatrix; }; exports.inflate = function inflate(A, factor) {
2
6
2
GitHub: muntashir/3net.js
64 65 66 67 68 69 70 71 72 73
function dTanh(x) { return math.subtract(1, math.square(tanh(x))); } function sigmoid(x) { return math.dotDivide(1, math.add(1, math.exp(math.multiply(-1, x)))); } function dSigmoid(x) { return math.dotMultiply(sigmoid(x), math.subtract(1, sigmoid(x)));
0
4
2
GitHub: cytoai/autotuner
28 29 30 31 32 33 34 35 36 37
std = math.matrix(std) } var gamma = math.dotDivide(math.subtract(mean, bestObjective), std); var pdf = math.dotDivide(math.exp(math.dotDivide(math.square(gamma), -2)), math.sqrt(2 * 3.14159)); var cdf = math.dotDivide(math.add(math.erf(math.dotDivide(gamma, math.sqrt(2))), 1), 2); return math.dotMultiply(std, math.add(math.dotMultiply(gamma, cdf), pdf)); }
0
2
2
+ 11 other calls in file
93 94 95 96 97 98 99 100 101 102
let max_delta_f = mathjs.max(school_delta_f); school.forEach((fish) => { let delta_f = mathjs.subtract(fish.next_fitness, fish.fitness); let ratio = mathjs.dotDivide(delta_f, max_delta_f); let weight = mathjs.add(fish.weight, ratio); if (weight < config.fss.min_weight) { weight = config.fss.min_weight;
0
0
0
+ 15 other calls in file
GitHub: Kirigaya-Kazuton/IA
59 60 61 62 63 64 65 66 67 68
// seleção aleatória console.log('seleção aleatória:', math.random([2, 2])); // adição 3, 5 console.log('adição:', math.add([1, 2], [2, 3])); // divisão 5, 4 console.log('divisão:', math.dotDivide([10, 12], [2, 3])); // logaritmo console.log('logaritmo:', math.log([10, 12])); // logaritmo na base 2 console.log('logaritmo na base 2:', math.log2([10, 12]));
0
0
0
+ 2 other calls in file
GitHub: mljs/optimization
430 431 432 433 434 435 436 437 438 439
//func_calls = func_calls + 1; if (dp[j][0] < 0) { // backwards difference //J(:,j) = math.dotDivide(math.subtract(y1, y),del[j]);//. / del[j]; //console.log(del[j]); //console.log(y); var column = math.dotDivide(math.subtract(y1, y),del[j]); for(var k=0;k< m;k++){ J[k][j]=column[k][0]; }
0
0
0
+ 8 other calls in file
mathjs.evaluate is the most popular function in mathjs (87200 examples)