How to use the dotMultiply function from mathjs

Find comprehensive JavaScript mathjs.dotMultiply code examples handpicked from public code repositorys.

43
44
45
46
47
48
49
50
51
    return _.compose(fn.mean, fn.sumrow)(a);
},

// for each partition of AM, reduce to mean-sum-row, then dotMultiply with degree of partition
scalPartByDeg: function(AMpart, partdeg) {
    return m.dotMultiply(_.map(AMpart, fn.msr), partdeg);
},


fork icon7
star icon16
watch icon0

+ 3 other calls in file

63
64
65
66
67
68
69
70
71
72

// Define rotated X,Y,Z-system, with Z along ab_normal and X along
// the projection of a_direction onto the normal plane of Z.
var ad = utils.unit(a_direction);
var Z = utils.unit(ab_normal);
var X = utils.unit(mjs.subtract(ad, mjs.dotMultiply(mjs.dot(ad, Z), Z)));
var Y = utils.cross(Z, X);

// Express va, vb and vc in the X,Y,Z-system
var l = cellpar[0];
fork icon2
star icon6
watch icon3

68
69
70
71
72
73
74
75
76
77
function sigmoid(x) {
    return math.dotDivide(1, math.add(1, math.exp(math.multiply(-1, x))));
}

function dSigmoid(x) {
    return math.dotMultiply(sigmoid(x), math.subtract(1, sigmoid(x)));
}

//Multiplies a column vector with a row vector because MathJS doesn't support tranposing 1 dimensional matrices
function outerProduct(x, y) {
fork icon0
star icon4
watch icon2

5
6
7
8
9
10
11
12
13
14
W = [1, 1, 0, 1/20, 0, 1, 1, 1, 1, 1, 1/140];

function weightedMse(x_song, x_target) {
  //console.log(x_song);
  //Normalize song and target vector values
  x_song_norm = math.dotMultiply(x_song, W);
  //console.log(x_song_norm)
  x_target_norm = math.dotMultiply(x_target, W);
  //console.log(x_target_norm)
  //Calculate MSE between song and target
fork icon0
star icon4
watch icon3

+ 3 other calls in file

30
31
32
33
34
35
36
37
38
39

let nu = maths.chain([...Array(1002).keys()])
              .dotMultiply(2)
              .add(1)
              .done();
let x1 = maths.dotMultiply(q, this.r1), x2 = maths.dotMultiply(q, this.r2);

var jx = [];
var _jx_1 = [];
var _jx_2 = [];
fork icon2
star icon3
watch icon0

+ 3 other calls in file

126
127
128
129
130
131
132
133
134
135
//B = math.evaluate("[" + B.toString() + "] cm");
//C = math.evaluate("[" + C.toString() + "] s");
var mathjsDoMath = performance.timerify(() => {
  return math.subtract(
    math.add(
      math.dotMultiply(4, math.dotDivide(math.dotMultiply(A, math.dotPow(B, 2)), math.dotPow(C, 2))),
      math.dotMultiply(2, math.dotDivide(math.dotMultiply(A, math.dotPow(B, 2)), math.dotPow(C, 2))),
    ),
    math.dotMultiply(3, math.dotDivide(math.dotMultiply(A, math.dotPow(B, 2)), math.dotPow(C, 2)))
  );
fork icon0
star icon2
watch icon0

+ 5 other calls in file

31
32
33
34
35
36
37
38
39
40
    var gamma = math.dotDivide(math.subtract(mean, bestObjective), std);

    var pdf = math.dotDivide(math.exp(math.dotDivide(math.square(gamma), -2)), math.sqrt(2 * 3.14159));
    var cdf = math.dotDivide(math.add(math.erf(math.dotDivide(gamma, math.sqrt(2))), 1), 2);

    return math.dotMultiply(std, math.add(math.dotMultiply(gamma, cdf), pdf));
}

module.exports = {
    argmax: argmax,
fork icon0
star icon2
watch icon2

+ 3 other calls in file

21
22
23
24
25
26
27
28
29
30
31
32
}


// DL = (AL - Y) o sigprime(Z)
function BP1(AL, Y, ZL) {
    const sigprimedZ = ZL.map(sigprime);
    return dotMultiply(subtract(AL, Y), sigprimedZ); 
}


// Dl = (W^T * D) o sigprime(Z)
function BP2(W, D, Z) {
fork icon0
star icon0
watch icon0

17
18
19
20
21
22
23
24
25
26
if (this.trial <= config.abc.max_trials) {
    let component = mathjs.pickRandom(this.position);
    let phi       = mathjs.random([1, dimensions], -1, 1)[0];

    let sub             = mathjs.subtract(this.position, component);
    let mul             = mathjs.dotMultiply(sub, phi);
    let new_position    = mathjs.add(this.position, mul);

    new_position        = this.checkBoundaries(new_position);
    let new_fitness     = this.evaluate(new_position);
fork icon0
star icon0
watch icon0

60
61
62
63
64
65
66
67
68
69
 */
individual_movement(school, step, boundaries) {

    school.forEach((fish) => {
        let rand    = mathjs.random([1, dimensions], -1, 1)[0];
        let factor  = mathjs.dotMultiply(rand, step);

        let nextPosition = mathjs.add(fish.position, factor);

        nextPosition = this.checkBoundaries(fish, nextPosition, boundaries);
fork icon0
star icon0
watch icon0

+ 19 other calls in file

47
48
49
50
51
52
53
54
55
56
// desvio sem tendência: é a raíz quadrada da variância sem tendência
console.log('desvio sem tendência:', math.std([2, 4], 'unbiased'));
// raíz quadrada
console.log('raíz quadrada:', math.sqrt([9, 81]));
// multiplicação convencional (1*4) e (2*3)
console.log('multiplicação convencional:', math.dotMultiply([1, 2], [4, 3]));
// multiplicação matricial: (1*2)+(2*3)=8
console.log('multiplicação matricial:', math.multiply([1, 2], [2, 3]));
// subtração 5 - 2 e 3 -1
console.log('subtração:', math.subtract([5, 3], [2, 1]));
fork icon0
star icon0
watch icon0

+ 2 other calls in file

157
158
159
160
161
162
163
164
165
166
    var tmp = math.multiply(math.ones(Npnt,1),weight[0]);
    weight_sq = math.dotMultiply(tmp,tmp);
}
else{
    //weight_sq = (weight(:)).^2;
    weight_sq = math.dotMultiply(weight,weight);
}


// initialize Jacobian with finite difference calculation
fork icon0
star icon0
watch icon0

+ 5 other calls in file

160
161
162
163
164
165
166
167
168
169
targets = math.resize(targets, [this.no, 1]);

// calculate error terms for output
var outputError = math.subtract(targets, this.ao);
var dAo = math.map(this.ao, dsigmoid);
var outputDelta = math.dotMultiply(dAo, outputError);

// calculate error terms for hidden
var hiddenError = math.multiply(math.transpose(this.wo), outputDelta);
var dWo = math.map(this.ah, dsigmoid);
fork icon0
star icon0
watch icon0