How to use the mean function from mathjs
Find comprehensive JavaScript mathjs.mean code examples handpicked from public code repositorys.
129 130 131 132 133 134 135 136 137 138
) && benchmarkMetricsCollection[key] .length > 0 ) { const mean = math.round( math.mean( benchmarkMetricsCollection[ key ] ),
70
24
16
+ 454 other calls in file
GitHub: kengz/Risk-game
34 35 36 37 38 39 40 41 42 43
function f(x) { return m.sum(x); } return _.map(a, f); }, // return mean of vector mean: function(v) { return m.mean(v); }, // composition of mean•sumrow, i.e. mean of column vector of chunk msr: function(a) { return _.compose(fn.mean, fn.sumrow)(a);
7
16
0
91 92 93 94 95 96 97 98 99 100
return { codeSize: rs[0].codeSize, memorySize: rs[0].memorySize, stddev: math.std(values), mean: math.mean(values), median: math.median(values), '95%-tile': stats.percentile(95), '99%-tile': stats.percentile(99) };
6
32
3
+ 11 other calls in file
164 165 166 167 168 169 170 171 172 173
keys.compilers[results[h].compiler['short-name']] = true keys.platforms[results[h].platform['short-name']] = true keys.environments[results[h].environment['short-name']] = true keys['input-sizes'][results[h].experiment['input-size']] = true results[h]['mean-time'] = math.mean(results[h].times) results[h]['std-time'] = math.std(results[h].times) results[h]['max-time'] = math.max(results[h].times) results[h]['min-time'] = math.min(results[h].times) a.push(results[h])
6
4
7
+ 5 other calls in file
13 14 15 16 17 18 19 20 21 22
//console.log(x_target_norm) //Calculate MSE between song and target e = math.subtract(x_song_norm,x_target_norm); //console.log(e) se = math.dotPow(e, 2); mse = math.mean(se); return mse; } return {
0
4
3
GitHub: jly36963/notes
62 63 64 65 66 67 68 69 70 71
// stats math.max(numbers); math.min(numbers); math.quantileSeq([1, 2, 3, 4, 5], .5) // value at quantile math.mean(numbers); math.median(numbers); math.mode(numbers) math.std(numbers); math.variance(numbers);
0
3
0
+ 6 other calls in file
GitHub: wattta/gekko-neuralnet
168 169 170 171 172 173 174 175 176 177
} let prediction = this.predictCandle() * this.scale; let currentPrice = candle.close; log.debug('Price = ' + currentPrice + ', Prediction = ' + prediction); let meanp = math.mean(prediction, currentPrice); let meanAlpha = (meanp - currentPrice) / currentPrice * 100; // sell only if the price is higher than the buying price or if the price drops below the threshold
140
2
1
GitHub: k3larra/generalisation
553 554 555 556 557 558 559 560 561 562
get_mean_raw_value(classnumber) { let mean_value = 0; Object.entries(this.values.xai).forEach(([key, value]) => { if (value.hasOwnProperty("target_idx")) { if (parseInt(value.target_idx) === classnumber) { mean_value = math.mean(csv_to_list(value.raw_string)); } } }); return mean_value;
0
0
0
+ 5 other calls in file
GitHub: vfp2/mindfind-backend
68 69 70 71 72 73 74 75 76 77
let randUniforms = []; responses.forEach((response) => { randUniforms.push(response.data); }); let average = math.mean(randUniforms); let stddev = math.std(randUniforms); var result = {results: []}; randUniforms.forEach((randUniform) => {
0
0
0
87 88 89 90 91 92 93 94 95 96
Error(['Unrecognized representation label of polyhedron', toString(i)]); } } let V = S.concat(V); let x0 = math.mean(V, 1); [U.lcon[[math.range(1, 4, true)]]] = vert2lcon(V, math.reshape[[TOL]]); U.vert = qlcon2vert(x0, math.reshape[[U.lcon]], math.reshape[[TOL]]); }
0
0
0
GitHub: Kirigaya-Kazuton/IA
3 4 5 6 7 8 9 10 11 12
// máximo (maior valor) console.log('máximo:', math.max([2, 1, 3])); // soma (retorna 6) console.log('soma:', math.sum([2, 1, 3])); // média (retorna 2) console.log('média:', math.mean([2, 1, 3])); // mediana (número entre o maior e o menor -> 2) console.log('mediana:', math.median([2, 1, 3])); // produto (multiplicação) console.log('produto:', math.prod([2, 1, 3]));
0
0
0
+ 2 other calls in file
72 73 74 75 76 77 78 79 80 81
"signature_name": "serving_default", "instances": records }).then(response => { // return correct results let predictions = response.data.predictions; predictions = math.mean(predictions, 0); let filteredSignals = []; // filter results based on passed frequency if (filter) {
0
0
0
8 9 10 11 12 13 14 15 16 17 18 19 20
function winsor(percentile, arr) { let rv = arr.slice(); const len = rv.length; const mean = m.mean(rv); const std = m.std(rv); rv = rv.map(v => (v - mean) / std);
0
0
0
115 116 117 118 119 120 121 122 123 124
return Sigmoid(v) })] } avgTendency = mathjs.mean(avgTendency, amountOfLessLost / amountOfMoreLost) console.log(`Current tokens: "${tokens}"; training for "${validToken}"; it ${iteration}; loss ${loss}; tendency ${amountOfLessLost / amountOfMoreLost}; avgTendency ${avgTendency}`) iteration += 1 lastLoss = loss
0
0
0
GitHub: bigf00t/bgpeen
537 538 539 540 541 542 543 544 545 546
if (!result.playerCounts) { return result; } // Get the mean of means for all playsCounts const expectedMean = mean( _.transform( result.playerCounts, (means, num, playerCount) => { means.push(Array(num).fill(playerCountMeans[playerCount]));
0
0
0
GitHub: erulabs/zenbot
141 142 143 144 145 146 147 148 149 150
s.mean = math.mean( s.lookback[0].close, s.lookback[1].close, s.lookback[2].close ) s.meanp = math.mean(s.prediction, oldmean) oldmean = s.prediction } // NORMAL onPeriod STUFF here global.meanp = s.meanp
0
0
1
+ 3 other calls in file
mathjs.evaluate is the most popular function in mathjs (87200 examples)