How to use the median function from mathjs
Find comprehensive JavaScript mathjs.median code examples handpicked from public code repositorys.
153 154 155 156 157 158 159 160 161 162
] ), 3 ); const median = math.round( math.median( benchmarkMetricsCollection[ key ] ),
70
24
16
+ 454 other calls in file
92 93 94 95 96 97 98 99 100 101
return { codeSize: rs[0].codeSize, memorySize: rs[0].memorySize, stddev: math.std(values), mean: math.mean(values), median: math.median(values), '95%-tile': stats.percentile(95), '99%-tile': stats.percentile(99) }; });
6
32
3
+ 11 other calls in file
GitHub: jly36963/notes
63 64 65 66 67 68 69 70 71 72
math.max(numbers); math.min(numbers); math.quantileSeq([1, 2, 3, 4, 5], .5) // value at quantile math.mean(numbers); math.median(numbers); math.mode(numbers) math.std(numbers); math.variance(numbers); math.sum(numbers);
0
3
0
+ 6 other calls in file
GitHub: jfoclpf/outliers2d
4 5 6 7 8 9 10 11 12 13 14 15
module.exports = { ellipseMad, dbscan } // points should be in format, f.ex: [[1,2],[3,4],[5,6],..] function ellipseMad (points, _sigma) { const sigma = _sigma || 3.5 const medianPoint = [median(points.map(p => p[0])), median(points.map(p => p[1]))] // remove outliers with Median Absolute Deviation (MAD) const madValue = [mad(points.map(p => p[0])), mad(points.map(p => p[1]))]
0
3
0
GitHub: Kirigaya-Kazuton/IA
5 6 7 8 9 10 11 12 13 14
// soma (retorna 6) console.log('soma:', math.sum([2, 1, 3])); // média (retorna 2) console.log('média:', math.mean([2, 1, 3])); // mediana (número entre o maior e o menor -> 2) console.log('mediana:', math.median([2, 1, 3])); // produto (multiplicação) console.log('produto:', math.prod([2, 1, 3])); // quadrado (eleva cada elemento) console.log('quadrado:', math.square([2, 1, 3]));
0
0
0
+ 2 other calls in file
GitHub: bigf00t/bgpeen
468 469 470 471 472 473 474 475 476 477
// Put old outliers back in so we don't mess with the STD too much const scoresAndOutliers = combineScores(result.scores, result.outlierScores); const explodedScores = getExplodedScores(scoresAndOutliers); const medianVal = median(explodedScores); const madCutoff = 8; const leftHalf = _.filter(explodedScores, (score) => score <= medianVal); const rightHalf = _.filter(explodedScores, (score) => score >= medianVal);
0
0
0
mathjs.evaluate is the most popular function in mathjs (87200 examples)