How to use the min function from mathjs
Find comprehensive JavaScript mathjs.min code examples handpicked from public code repositorys.
mathjs.min is a function that returns the minimum value from an array or a set of numbers.
7074 7075 7076 7077 7078 7079 7080 7081 7082 7083
quirkColumn.push(1); } } else { var basicGate = circuit.basicGates[gate.name]; var maxWire = math.max(gate.wires); var minWire = math.min(gate.wires); var gateWires = gate.wires.slice(); var wireRange = range(maxWire); if(basicGate) { var quirkName = "";
+ 157 other calls in file
145 146 147 148 149 150 151 152 153 154
] ), 3 ); const min = math.round( math.min( benchmarkMetricsCollection[ key ] ),
+ 454 other calls in file
How does mathjs.min work?
mathjs.min is a function from the mathjs library that takes one or more arguments representing the numbers to be compared. If the argument is an array, it returns the minimum value in the array. If there are multiple arguments, it returns the minimum value of all the arguments. Here's how the mathjs.min function works: If mathjs.min is called with a single argument that is an array, it returns the minimum value in the array. If mathjs.min is called with multiple arguments, it returns the minimum value of all the arguments. If any of the arguments cannot be converted to a number, NaN is returned. If no arguments are passed to mathjs.min, Infinity is returned. If an array is passed as the first argument, and additional arguments are provided, the values in the array will be compared with the additional arguments. mathjs.min can also be used in conjunction with the mathjs.max function to find the range of a dataset.
167 168 169 170 171 172 173 174 175 176
keys['input-sizes'][results[h].experiment['input-size']] = true results[h]['mean-time'] = math.mean(results[h].times) results[h]['std-time'] = math.std(results[h].times) results[h]['max-time'] = math.max(results[h].times) results[h]['min-time'] = math.min(results[h].times) a.push(results[h]) } console.log('### Invariants (configuration parameters that are the same for all runs) ###')
+ 5 other calls in file
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
newEmbed.addField("(Level) id: " + team_by_level_best, team_by_level_description[1], true); newEmbed.addBlankField(false); let team_by_highest_mastery = [];//array of stats objects for (let b in TEAM_COMBINATIONS) team_by_highest_mastery.push(UTILS.calculateTeamStatistics(mathjs, TEAM_COMBINATIONS[b], masteries.map(m => (m[0].championPoints || 0)))); const team_by_highest_mastery_lowest_diff = mathjs.min(team_by_highest_mastery.map(t => t.abs)); const team_by_highest_mastery_best = team_by_highest_mastery.findIndex(t => t.abs === team_by_highest_mastery_lowest_diff);//team arrangement index let team_by_highest_mastery_description = [[], []]; for (let i = 0; i < TEAM_COMBINATIONS[team_by_highest_mastery_best].length; ++i) { const individual_description = CONFIG.STATIC.CHAMPIONS[masteries[i][0].championId].emoji + " `" + UTILS.masteryPoints(masteries[i][0].championPoints) + "` " + summoners[i].name;
+ 5 other calls in file
Ai Example
1 2 3 4 5 6 7 8 9 10 11 12 13 14
const math = require("mathjs"); // Find the minimum value in an array of numbers const numbers = [4, 7, 1, 8, 3, 9, 2, 6, 5]; const minValue = math.min(numbers); console.log(minValue); // Output: 1 // Find the minimum value of multiple arguments const minValue2 = math.min(5, 3, 9, 2, 8); console.log(minValue2); // Output: 2 // Find the minimum value in an array and additional arguments const minValue3 = math.min([5, 3, 9], 2, 8); console.log(minValue3); // Output: 2
In this example, we first import the mathjs library using the require function. We then call the math.min function to find the minimum value in an array of numbers. The min function returns the minimum value, which we then log to the console. We then call the math.min function again, but this time with multiple arguments. The min function returns the minimum value of all the arguments. Finally, we call the math.min function a third time, this time passing an array as the first argument and additional arguments. The min function compares all the values in the array with the additional arguments and returns the minimum value. In each case, the math.min function returns the minimum value of the input numbers.
109 110 111 112 113 114 115 116 117
let X = res.subset(math.index(0, math.range(0, 4))); let Y = res.subset(math.index(1, math.range(0, 4))); return { w: Math.round(math.max(X) - math.min(X)), h: Math.round(math.max(Y) - math.min(Y)) } }
+ 27 other calls in file
17 18 19 20 21 22 23
worker.terminate() } gc() console.log({heapUsed: process.memoryUsage().heapUsed / 1000}) console.log({min: math.min(RESULTS), max: math.max(RESULTS), median: math.median(RESULTS)}) })()
GitHub: jly36963/notes
59 60 61 62 63 64 65 66 67 68
math.gcd(a, b) // greatest common denominator math.lcm(a, b) // least common multiple // stats math.max(numbers); math.min(numbers); math.quantileSeq([1, 2, 3, 4, 5], .5) // value at quantile math.mean(numbers); math.median(numbers);
+ 6 other calls in file
GitHub: sofroniewn/ray-to-line
28 29 30 31 32 33 34 35 36 37
} else if (t0 > 0 & t1<=0){ // lines colinear and intersecting at origin return {startPoint: point, distance:0, angle:0, intersection:point} } else{ // lines colinear and intersecting t = math.min(t0,t1) return {startPoint: point, distance:t, angle:0, intersection:[t*r[0]+point[0], t*r[1]+point[1]]} } } else if (a === 0){ // lines parallel and non intersecting
8 9 10 11 12 13 14 15 16 17
getMax(){ return math.max(math.flatten(this.matrix)); } getMin(){ return math.min(math.flatten(this.matrix)); } getMean(){ let mean = 0;
326 327 328 329 330 331 332 333 334 335
school.forEach((fish) => { new_best.push(1/fish.fitness); }); new_best = mathjs.min(new_best); if (!best) { return new_best; }
+ 3 other calls in file
GitHub: mljs/optimization
239 240 241 242 243 244 245 246 247 248
for(var k=0;k<idx.length;k++){ hidx[k]=h[idx[k]]; } p_try = math.add(p ,hidx); // update only [idx] elements p_try = math.min(math.max(p_min,p_try),p_max); // apply constraints delta_y = math.subtract(y_dat, func(t,p_try,c)); // residual error using p_try // func_calls = func_calls + 1; //X2_try = delta_y' * ( delta_y .* weight_sq ); // Chi-squared error criteria
+ 2 other calls in file
14 15 16 17 18 19 20 21 22 23
const std = m.std(rv); rv = rv.map(v => (v - mean) / std); const percentage = percentile / 100 / 2; const min = m.min(rv); // const min = m.quantileSeq(rv, percentage); const max = m.max(rv); // const max = m.quantileSeq(rv, 1 - percentage); for (let i = 0; i < len; i++) {
63 64 65 66 67 68 69 70 71
); } let currentDiff = diff[diff.length - 1]; let rate = math.abs((candle.close - candle.open) / candle.open); if (currentDiff == math.min(...diff)) { downcandles++; upcandles = 0; }
GitHub: mljs/optimization
38 39 40 41 42 43 44 45 46
for(var i = 0; i < size + 1; ++i) { var vector = vertices[i]; y.push(f(vector)); } var low = Util.getIndexRow(y, math.min(y)); var high = Util.getIndexRow(y, math.max(y)); var li = high; var ho = low;
+ 9 other calls in file
mathjs.evaluate is the most popular function in mathjs (87200 examples)