How to use the sqrt function from mathjs
Find comprehensive JavaScript mathjs.sqrt code examples handpicked from public code repositorys.
mathjs.sqrt is a function that computes the square root of a number or an array of numbers.
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
if(value) { if(prob == 0) { U[1][0] = 1; } else { U[1][1] = math.sqrt(1 / prob); } } else { if(prob == 0) { U[0][1] = 1;
+ 315 other calls in file
6 7 8 9 10 11 12 13 14 15
const cdiv = math.divide; const cmul = math.multiply; const csin = math.sin; const cexp = math.exp; const clog = math.log; const csqrt = math.sqrt; const cpow = math.pow; const csquare = z => cmul(z, z); const gamma_right = math.gamma;
+ 15 other calls in file
How does mathjs.sqrt work?
mathjs.sqrt
is a function provided by the Math.js library that returns the positive square root of a given number, or the square root of each element of an array or matrix if passed as an argument. If a negative number is passed as the argument, the function will return the complex square root of that number.
149 150 151 152 153 154 155 156 157 158
var math = require('mathjs') var a = math.complex(3, -1) //=> { re: 3, im: -1 } var b = math.sqrt(-1) //=> { re: 0, im: -1 } console.log(math.multiply(a, b).toString()) //=> '1 + 3i'
+ 13 other calls in file
113 114 115 116 117 118 119 120 121
function erf_large(z) { const k = cmul_i(creciprocal(z)); const k2 = csquare(k); const corrections = cdiv( cmul(k, cadd(1, cmul(k2, cadd(0.5, cmul(0.75, k2))))), math.sqrt(Math.PI) ); return cadd(1, cmul_i(cmul(cexp(csquare(cmul_i(z))), corrections))); }
+ 7 other calls in file
Ai Example
1 2 3 4 5 6
const math = require("mathjs"); const num = 25; const sqrtNum = math.sqrt(num); console.log(sqrtNum); // Output: 5
In this example, we first import the mathjs library using require. We then define a variable num with the value of 25, and use math.sqrt to find its square root, which is assigned to the variable sqrtNum. Finally, we log the value of sqrtNum to the console, which should output 5.
44 45 46 47 48 49 50 51 52 53
<script src="math.js" type="text/javascript"></script> </head> <body> <script type="text/javascript"> // use math.js math.sqrt(-4); // 2i </script> </body> </html> ```
+ 15 other calls in file
GitHub: asilvas/salient-maps
166 167 168 169 170 171 172 173 174
const uniquePixelsPow = pow(uniquePixelsSub, 2); const colorDifferenceMatrix = uniquePixelsPow.map(row => row.map(col => math.sum(col))); this.colorDistanceMatrix = math.sqrt(colorDifferenceMatrix); this.exponentialColorDistanceMatrix = math.exp(math.multiply(math.divide(colorDifferenceMatrix, (2 * sigmac * sigmac)), -1)); }
GitHub: WasmEdge/www
162 163 164 165 166 167 168 169 170 171
<p>With <a href="https://rollupjs.org/guide/en/">rollup.js</a>, we can run CommonJS (CJS) and NodeJS (NPM) modules in WasmEdge too. The <a href="https://github.com/second-state/wasmedge-quickjs/blob/main/example_js/simple_common_js_demo/npm_main.js">simple_common_js_demo/npm_main.js</a> demo shows how it works. It utilizes the third-party <code>md5</code> and <code>mathjs</code> modules.</p> <pre><code class="language-javascript">const md5 = require('md5'); console.log('md5(message)=', md5('message')); const {sqrt} = require('mathjs'); console.log('sqrt(-4)=', sqrt(-4).toString()); </code></pre> <p>In order to run it, we must first use the <a href="https://rollupjs.org/guide/en/">rollup.js</a> tool to build all dependencies into a single file. In the process, <code>rollup.js</code> converts CommonJS modules into <a href="es6.html">WasmEdge-compatible ES6 modules</a>. The build script is <a href="https://github.com/second-state/wasmedge-quickjs/blob/main/example_js/simple_common_js_demo/rollup.config.js">rollup.config.js</a>.</p> <pre><code class="language-javascript">const {babel} = require('@rollup/plugin-babel'); const nodeResolve = require('@rollup/plugin-node-resolve');
50 51 52 53 54 55 56 57 58
let oros = maths.chain(jx).dotDivide(q).dotDivide(maths.dotPow(bes, 2)).done(); const j2 = maths.complex('i'); var dz = []; for (var i = 0; i < this.f.length; i++) { var p2 = maths.sqrt(maths.chain(q) .dotMultiply(q) .add(maths.dotMultiply(j2,omega[i]*Math.PI*4.0e-7*this.mr2*this.con2)) .done());
+ 3 other calls in file
GitHub: jly36963/notes
41 42 43 44 45 46 47 48 49 50
math.log(a) // ln math.log(a, 2) // log base 2 math.mod(a, b) // modulus (remainder) math.multiply(a, b) // multiply math.pow(a, b) // a ** b math.sqrt(a) // square root math.subtract(a, b) // subtract // abs math.abs(a); // absolute value
+ 6 other calls in file
46 47 48 49 50 51 52 53 54 55
return this.findAllDivisorsLessThan(source, source) } static findAllDivisorsLessThan(source, target) { let numbers = [] let sqrt = math.sqrt(source) for (let i = 1; i < sqrt; i++) { if (source % i === 0) { if (source / i <= target) { numbers.push(source / i)
22 23 24 25 26 27 28 29 30 31
} return a / b } sqrt(a) { return sqrt(a) } cbrt(a) { return cbrt(a)
GitHub: jmmcd/GEjs
505 506 507 508 509 510 511 512 513 514 515 516
const z = math.subtract(x, y); return RMS(z); } function RMS(x) { return math.sqrt(math.sum(math.square(x))); } function sr_quartic(s) { // notice using math.js evaluate we can use +, -
+ 2 other calls in file
21 22 23 24 25 26 27 28 29 30
return NaN } return a / b } sqrt(a) { return sqrt(a) } cbrt(a) {
GitHub: xiefengnian/js-ml
112 113 114 115 116 117 118 119 120
}, { 'b': [0, 0], 'w': [ -math.sqrt(6 / (dimension[0] + dimension[1])), math.sqrt(6 / (dimension[0] + dimension[1])) ] } ];
GitHub: brin-eris/basic-bots
166 167 168 169 170 171 172 173 174 175
let result = ( Mathjs.exp(-1 * x*x)); return isNaN(result) ? 1.0 : result; } let sqrRoot = function (x){ let result = Mathjs.sqrt(x); return isNaN(result) ? 1.0 : result; } let exp = function(x){ let result = Mathjs.exp(x);
+ 7 other calls in file
197 198 199 200 201 202 203 204 205 206
var Ap = math.multiply(A, p); var alpha = rsold / math.dot(p, Ap); x = math.add(x, math.multiply(alpha, p)); r = math.subtract(r, math.multiply(alpha, Ap)); var rsnew = math.dot(r, r); var er = math.sqrt(rsnew); err.push(er); console.log(x); console.log(math.flatten(x)); if(Sizematrix == 2){
63 64 65 66 67 68 69 70 71 72
this.height.actual = unit(this.height.actual) this.height.rounded = clone(this.height.actual); this.height.rounded.value = SigFig(this.height.rounded.value, this.roundToSigFig) // First find final velocity (vf) where formula is: d = \frac{vf^{2} - vi^{2}}{2g} // Derived formula is: \sqrt{vi^{2} + 2gd} = vf this.finalVelocity.actual = sqrt(add(square(this.initialVelocity.actual), multiply(multiply(2, gravity), this.height.actual))) this.finalVelocity.rounded = clone(this.finalVelocity.actual); this.finalVelocity.rounded.value = SigFig(this.finalVelocity.rounded.value, this.roundToSigFig) this.equationInLatex.push(`v_{f} = \\sqrt{{v_{i}}^{2} - 2gd} \\implies \\sqrt{(${this.initialVelocity.actual.toString()})^{2} - 2(${gravity.toString()})(${this.height.actual.toString()})} = ${this.finalVelocity.rounded.toString()}`) // Next find the time (use the computed final velocity)
+ 10 other calls in file
60 61 62 63 64 65 66 67 68 69
} map(func) { return new Point(func(this.x), func(this.y)); } get magntitude() { return math.sqrt(math.add(math.pow(this._x, "2"), math.pow(this._y, "2"))); } get array() { return [this._x, this._y]; }
GitHub: vfp2/mindfind-backend
107 108 109 110 111 112 113 114 115 116
let nl = 9; // Number of Lines multiplier let N = 4999; // number of steps in a random walk per stage: (8 * nl)^2 +1 to make the number odd let numStages = nl + 1; // TODO: confirm how this differs to nl... let entropyBytesLen = math.ceil((N * numStages)/8); // byte size of total number of MMI bits to get from the QRNG let stddev = math.sqrt(N); let resolution = 35906101; // total number of crawled URLs to find an index in axios .get(`http://medfarm.fp2.dev:3333/api/randbytes?deviceId=QWR4E002&length=${entropyBytesLen}`, {responseType: 'arraybuffer'})
+ 5 other calls in file
GitHub: Divya565/NodejsRepo
53 54 55 56 57 58 59 60 61 62 63
//.....................sqrt...........................// app.get('/app/sqrt/:num1', async (req, res, next) => { res.send( { sqrt: sqrt(Number(req.params.num1)) } ) });
+ 2 other calls in file
mathjs.evaluate is the most popular function in mathjs (87200 examples)