How to use the std function from mathjs
Find comprehensive JavaScript mathjs.std code examples handpicked from public code repositorys.
90 91 92 93 94 95 96 97 98 99
stats.push(values); return { codeSize: rs[0].codeSize, memorySize: rs[0].memorySize, stddev: math.std(values), mean: math.mean(values), median: math.median(values), '95%-tile': stats.percentile(95), '99%-tile': stats.percentile(99)
6
32
3
+ 11 other calls in file
161 162 163 164 165 166 167 168 169 170
] ), 3 ); const stddev = math.round( math.std( benchmarkMetricsCollection[ key ] ),
70
24
16
+ 454 other calls in file
165 166 167 168 169 170 171 172 173 174
keys.platforms[results[h].platform['short-name']] = true keys.environments[results[h].environment['short-name']] = true keys['input-sizes'][results[h].experiment['input-size']] = true results[h]['mean-time'] = math.mean(results[h].times) results[h]['std-time'] = math.std(results[h].times) results[h]['max-time'] = math.max(results[h].times) results[h]['min-time'] = math.min(results[h].times) a.push(results[h]) }
6
4
7
+ 5 other calls in file
GitHub: jly36963/notes
65 66 67 68 69 70 71 72 73 74
math.quantileSeq([1, 2, 3, 4, 5], .5) // value at quantile math.mean(numbers); math.median(numbers); math.mode(numbers) math.std(numbers); math.variance(numbers); math.sum(numbers); // probability
0
3
0
+ 6 other calls in file
GitHub: Kirigaya-Kazuton/IA
39 40 41 42 43 44 45 46 47 48
(4-3)²=1 (1+1)/1=2 */ console.log('variância sem tendência:', math.variance([2, 4], 'unbiased')); // desvio padrão: é a raíz quadrada da variância console.log('desvio padrão:', math.std([2, 4], 'uncorrected')); // desvio com tendência: é a raíz quadrada da variância com tendência console.log('desvio com tendência:', math.std([2, 4], 'biased')); // desvio sem tendência: é a raíz quadrada da variância sem tendência console.log('desvio sem tendência:', math.std([2, 4], 'unbiased'));
0
0
0
+ 8 other calls in file
9 10 11 12 13 14 15 16 17 18 19 20 21
function winsor(percentile, arr) { let rv = arr.slice(); const len = rv.length; const mean = m.mean(rv); const std = m.std(rv); rv = rv.map(v => (v - mean) / std); const percentage = percentile / 100 / 2;
0
0
0
GitHub: MRossettiPQ/DashIMU-TCC
57 58 59 60 61 62 63 64
return array.map((obj) => Math.sqrt(obj)) } exports.getStDeviation = (array) => { console.log('[SCILAB] Standard Deviation') return math.std(array) }
0
0
0
+ 5 other calls in file
GitHub: k3larra/generalisation
589 590 591 592 593 594 595 596 597 598
get_std_from_pos_value(classnumber) { let std_value = 0; Object.entries(this.values.xai).forEach(([key, value]) => { if (value.hasOwnProperty("target_idx")) { if (parseInt(value.target_idx) === classnumber) { std_value = math.std(remove_neg_from_list(csv_to_list(value.raw_string))); } } }); return std_value;
0
0
0
+ 5 other calls in file
GitHub: vfp2/mindfind-backend
69 70 71 72 73 74 75 76 77 78
responses.forEach((response) => { randUniforms.push(response.data); }); let average = math.mean(randUniforms); let stddev = math.std(randUniforms); var result = {results: []}; randUniforms.forEach((randUniform) => { // z-score: z = (x – μ) / σ
0
0
0
mathjs.evaluate is the most popular function in mathjs (87200 examples)