How to use the transpose function from mathjs
Find comprehensive JavaScript mathjs.transpose code examples handpicked from public code repositorys.
mathjs.transpose is a function that transposes a matrix by flipping its rows and columns, effectively rotating it by 90 degrees.
GitHub: adamisntdead/qics
21 22 23 24 25 26 27 28 29 30
// Check if its Square if ((math.size(givenMatrix))[0] !== (math.size(givenMatrix))[1]) { return false; } const conjugateTranspose = math.transpose(math.conj(givenMatrix)); const inverse = math.inv(givenMatrix); return math.deepEqual(inverse, conjugateTranspose); };
+ 5 other calls in file
GitHub: adamisntdead/qics
23 24 25 26 27 28 29 30 31 32
// Check if its Square if (math.size(givenMatrix)[0] !== math.size(givenMatrix)[1]) { return false; } var conjugateTranspose = math.transpose(math.conj(givenMatrix)); var inverse = math.inv(givenMatrix); return math.deepEqual(inverse, conjugateTranspose); };
How does mathjs.transpose work?
mathjs.transpose
is a function provided by the mathjs
library, which is used for mathematical operations in JavaScript.
When mathjs.transpose
is called on a matrix, it creates a new matrix with its rows and columns swapped.
For example, given the following matrix:
css[ 1, 2, 3 ]
[ 4, 5, 6 ]
[ 7, 8, 9 ]
mathjs.transpose
would return:
css[ 1, 4, 7 ]
[ 2, 5, 8 ]
[ 3, 6, 9 ]
As you can see, the rows and columns of the original matrix have been flipped, effectively rotating the matrix by 90 degrees.
mathjs.transpose
can be useful for a variety of applications, including data analysis, image processing, and linear algebra.
143 144 145 146 147 148 149 150 151 152
let ratio = maxSize / dist; let scaledXYZ = math.multiply(xyzCam, ratio); // Insert the computed coordinates in the collada template file // ------------------------------------------------------------ // create the coordinate string for collada scaledXYZ = math.transpose(scaledXYZ) let coordString = ""; const dim0 = math.subset(math.size(scaledXYZ), math.index([0])); const dim1 = math.subset(math.size(scaledXYZ), math.index([1])); for (let i = 0; i < dim1; i += 1) {
969 970 971 972 973 974 975 976 977 978
matrix.forEach(row => { m.push([row.x, row.y, row.z, 1]) }) var cameraMatrix = [[10, 0, 0, 0], [0, 10, 0, 0], [0, 0, 1, 0]] var projection = math.transpose(math.multiply(cameraMatrix, math.transpose(m))) //console.log(projection) for (let i = 0; i < matrix.length; i++) { var p = projection[i] matrix[i].xp = matrix[i].x // p[0]
+ 196 other calls in file
Ai Example
1 2 3 4 5 6 7 8 9 10 11
const math = require("mathjs"); const matrix = math.matrix([ [1, 2, 3], [4, 5, 6], [7, 8, 9], ]); const transposedMatrix = math.transpose(matrix); console.log(transposedMatrix.toArray());
In this example, we're using the mathjs library to create a matrix and then using math.transpose to transpose it. We're then using the toArray function to convert the transposed matrix back into a standard JavaScript array, and using console.log to output it to the console. When we run this code, we get the following output: css Copy code
392 393 394 395 396 397 398 399 400 401 402 403
} export function prepareDataset(rows) { switch (modelType) { case "covariance": return math.transpose(subtract_means(rows)) case "cosine": return math.transpose(unit_scaling(rows)) }
+ 15 other calls in file
30 31 32 33 34 35 36 37 38 39 40
function BP2(W, D, Z) { // Denna kodrad formatterar endast matriserna rätt i JavaScript const matrixW = Array.isArray(W[0]) ? W : [W]; // ...och har inget med matematiken att göra. const transposedW = transpose(matrixW); const sigprimedZ = Z.map(sigprime); return dotMultiply(multiply(transposedW, D), sigprimedZ); }
GitHub: Kirigaya-Kazuton/IA
53 54 55 56 57 58 59 60 61 62
// multiplicação matricial: (1*2)+(2*3)=8 console.log('multiplicação matricial:', math.multiply([1, 2], [2, 3])); // subtração 5 - 2 e 3 -1 console.log('subtração:', math.subtract([5, 3], [2, 1])); // transposição [1, 3], [2, 4] console.log('transposição:', math.transpose([[1, 2], [3, 4]])); // seleção aleatória console.log('seleção aleatória:', math.random([2, 2])); // adição 3, 5 console.log('adição:', math.add([1, 2], [2, 3]));
+ 2 other calls in file
GitHub: mljs/optimization
472 473 474 475 476 477 478 479 480 481
// J = rank-1 update to Jacobian Matrix J(i,j)=dy(i)/dp(j) i=1:n; j=1:m //console.log(p+" X "+ p_old) var h = math.subtract(p, p_old); //console.log("hhh "+h); var h_t = math.transpose(h); var hh = math.multiply(h_t,h); var hhh = math.map(h_t,function(value){ return value / hh; });
+ 5 other calls in file
GitHub: mljs/optimization
29 30 31 32 33 34 35 36 37 38 39 40
var t = new Array(Npnt);//[1:Npnt]'; // independent variable for(var i=0;i<Npnt;i++) t[i]=[i+1]; //t = math.transpose(math.matrix(t)); // true value of parameters ... var p_true = []; if(example_number == 1) p_true = [ [20], [10], [1], [50] ]; if(example_number == 2) p_true = [ [20], [-24], [30], [-40] ];
2 3 4 5 6 7 8 9 10 11 12
var Plotly = require('plotly.js-dist-min') /* Single iteration of the GLS. */ var m = math.matrix() var lorenz_generalized = function (dydt, y, t) { temp = math.transpose(math.multiply(y[0], math.matrix([[0], [-y[2]], [y[1]]]))) res = math.add(math.multiply(m, y), temp).valueOf()[0] dydt[0] = res[0] dydt[1] = res[1] dydt[2] = res[2]
mathjs.evaluate is the most popular function in mathjs (87200 examples)