How to use the max function from mathjs
Find comprehensive JavaScript mathjs.max code examples handpicked from public code repositorys.
mathjs.max finds the maximum value from a given set of numbers or an array.
7073 7074 7075 7076 7077 7078 7079 7080 7081 7082
if(isBasicGate || !isWireInRange(wire, wireRange)){ quirkColumn.push(1); } } else { var basicGate = circuit.basicGates[gate.name]; var maxWire = math.max(gate.wires); var minWire = math.min(gate.wires); var gateWires = gate.wires.slice(); var wireRange = range(maxWire); if(basicGate) {
+ 157 other calls in file
137 138 139 140 141 142 143 144 145 146
] ), 3 ); const max = math.round( math.max( benchmarkMetricsCollection[ key ] ),
+ 454 other calls in file
How does mathjs.max work?
mathjs.max takes a set of numbers or an array as input and iterates through each element to find the maximum value by comparing each element with the current maximum value, and updating the maximum value if the current element is greater than the current maximum value. Once all elements are iterated through, the maximum value is returned as the output of the function.
166 167 168 169 170 171 172 173 174
keys.environments[results[h].environment['short-name']] = true keys['input-sizes'][results[h].experiment['input-size']] = true results[h]['mean-time'] = math.mean(results[h].times) results[h]['std-time'] = math.std(results[h].times) results[h]['max-time'] = math.max(results[h].times) results[h]['min-time'] = math.min(results[h].times) a.push(results[h]) }
+ 5 other calls in file
69 70 71 72 73 74 75 76 77 78
return clusters; }; _exports.done = function done(M, i) { var testMatrix = math.dotPow(M, 2); var m = math.max(testMatrix) - math.min(testMatrix); return m === 0; }; // Takes an adjectancy matrix and options
Ai Example
1 2 3 4 5 6 7
const mathjs = require("mathjs"); const numbers = [2, 7, 1, 8, 4, 5]; const maxNumber = mathjs.max(numbers); console.log(maxNumber); // Output: 8
In this example, we first import the mathjs library and create an array of numbers. We then use the mathjs.max function to find the maximum value in the array, which is 8. Finally, we print the maximum value to the console using console.log.
64 65 66 67 68 69 70 71 72 73
return clusters; }; exports.done = function done(M, i) { const testMatrix = math.dotPow(M, 2); const m = math.max(testMatrix) - math.min(testMatrix); return (m === 0); }; // Takes an adjectancy matrix and options
GitHub: jly36963/notes
58 59 60 61 62 63 64 65 66 67
// factors & multiples math.gcd(a, b) // greatest common denominator math.lcm(a, b) // least common multiple // stats math.max(numbers); math.min(numbers); math.quantileSeq([1, 2, 3, 4, 5], .5) // value at quantile math.mean(numbers);
+ 6 other calls in file
38 39 40 41 42 43 44 45 46 47
let p = triu([...A]); let o = tril([...A]); let l = mathjs.subtract(d,o); let u = mathjs.subtract(d,p); let T = mathjs.multiply(mathjs.inv(d),mathjs.add(l,u)); let re = mathjs.max(mathjs.abs(mathjs.eigs(T).values)); if(re > 1){ logs.push({ type: 'Error', text: 'Spectral radius greater than 1: the method does not converge.'
40 41 42 43 44 45 46 47 48 49
let l = mathjs.subtract(d,o); let u = mathjs.subtract(d,p); console.log(u); let T = mathjs.multiply(mathjs.inv(mathjs.subtract(d,mathjs.multiply(w,l))),mathjs.add(mathjs.multiply(mathjs.subtract(1,w),d),mathjs.multiply(w,u))); console.log(T); const re = mathjs.max(mathjs.abs(mathjs.eigs(T).values)); console.log(re); if(re > 1){ logs.push({ type: 'Error',
28 29 30 31 32 33 34 35 36 37
d = mathjs.diag(mathjs.diag(A)); p = triu(A); l = mathjs.subtract(A,tril(A)); u = mathjs.subtract(A,triu(A)); T = mathjs.multiply(mathjs.inv(mathjs.subtract(d,l)),u); re = mathjs.max(mathjs.abs(mathjs.eigs(T).values)); if(re > 1){ console.log('Radio Espectral mayor que 1'); console.log('el método no converge'); return;
44 45 46 47 48 49 50 51 52 53
err = tol + 1; z = [i,x[0],x[1],x[2],err]; while(err > tol && i<iter){ xi = mathjs.add(mathjs.multiply(T,x),C); console.log(xi); err = mathjs.max(mathjs.sqrt(mathjs.add(mathjs.pow(mathjs.subtract(xi[0],x[0]),2),mathjs.add(mathjs.pow(mathjs.subtract(xi[1],x[1]),2),mathjs.pow(mathjs.subtract(xi[2],x[2]),2))))); x = xi; } i=i+1; z[i][0]=i;
+ 3 other calls in file
47 48 49 50 51 52 53 54 55 56
} else { TOL = [[]]; } let N = math.max(math.size(params)); let idxType = [find(forEach(params, ischar())), N + 1]; let L = math.size(idxType) - 1; let S;
88 89 90 91 92 93 94 95 96
let df = mathjs.abs( mathjs.subtract(fish.next_fitness, fish.fitness)); school_delta_f.push(df); }); let max_delta_f = mathjs.max(school_delta_f); school.forEach((fish) => { let delta_f = mathjs.subtract(fish.next_fitness, fish.fitness);
+ 3 other calls in file
GitHub: cblanken/aoc_2022
34 35 36 37 38 39 40 41 42 43 44
} function getNeighbors(matrix, x, y, z) { let neighbors = []; let size = matrix.size(); for(let i = math.max(0, x-1); i <= math.min(size[0]-1, x+1); i++) { for(let j = math.max(0, y-1); j <= math.min(size[1]-1, y+1); j++) { for(let k = math.max(0, z-1); k <= math.min(size[2]-1, z+1); k++) { if (i === x && j === y && k === z) { continue; } neighbors.push([i, j, k]);
+ 15 other calls in file
16 17 18 19 20 21 22 23 24 25
rv = rv.map(v => (v - mean) / std); const percentage = percentile / 100 / 2; const min = m.min(rv); // const min = m.quantileSeq(rv, percentage); const max = m.max(rv); // const max = m.quantileSeq(rv, 1 - percentage); for (let i = 0; i < len; i++) { if (rv[i] < min) rv[i] = min; else if (rv[i] > max) rv[i] = max;
4 5 6 7 8 9 10 11 12 13
this.matrix = matrix; this.counter = this.matrix[0].length * this.matrix.length; } getMax(){ return math.max(math.flatten(this.matrix)); } getMin(){ return math.min(math.flatten(this.matrix));
GitHub: mljs/optimization
39 40 41 42 43 44 45 46 47 48
var vector = vertices[i]; y.push(f(vector)); } var low = Util.getIndexRow(y, math.min(y)); var high = Util.getIndexRow(y, math.max(y)); var li = high; var ho = low; for(var i = 0; i <= size; ++i) {
+ 9 other calls in file
mathjs.evaluate is the most popular function in mathjs (87200 examples)