How to use the aperture function from ramda
Find comprehensive JavaScript ramda.aperture code examples handpicked from public code repositorys.
ramda.aperture is a function in the Ramda library that returns a new list by applying a sliding window to a given list.
GitHub: alvaro-cuesta/aoc-js
1 2 3 4 5 6 7 8 9 10 11
const { parseText } = require('../utils') const makeMarkerFinder = (length) => R.pipe( parseText, R.aperture(length), R.findIndex(R.pipe(R.countBy(R.identity), R.values, R.all(R.equals(1)))), R.add(length), )
+ 2 other calls in file
GitHub: alvaro-cuesta/aoc-js
16 17 18 19 20 21 22 23 24 25 26
), ) const boardFromInput = R.converge( R.reduce((acc, row) => { for (const [from, to] of R.aperture(2, row)) { for (const pos of iterateStraightLines(from, to)) { acc[vec.key(pos)] = '#' } }
How does ramda.aperture work?
ramda.aperture is a function in the Ramda library that creates a new array of subarrays of a given length, with each subarray being created by applying a sliding window to the original array. The aperture function takes two arguments: the first argument is the length of each subarray, and the second argument is the original array to be split. The resulting array will contain n - m + 1 subarrays, where n is the length of the original array and m is the length of the subarrays. Each subarray is created by taking a slice of the original array starting at index i and ending at index i + m - 1, where i is the index of the first element in the subarray.
GitHub: dehmer/levelgist
67 68 69 70 71 72 73 74 75
const done = () => { context.parts.push(undefined) const recordNumber = context.recordNumber const shapeType = context.shapeType const points = R.aperture(2, context.parts).map(([start, end]) => context.points.slice(start, end)) next(factory({ recordNumber, shapeType, box: context.box, points })) return (decoders => decoders.pop()) }
+ 3 other calls in file
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
* @param {Array} list The list to split into `n`-tuples * @return {Array} The new list. * @see R.transduce * @example * * R.aperture(2, [1, 2, 3, 4, 5]); //=> [[1, 2], [2, 3], [3, 4], [4, 5]] * R.aperture(3, [1, 2, 3, 4, 5]); //=> [[1, 2, 3], [2, 3, 4], [3, 4, 5]] * R.aperture(7, [1, 2, 3, 4, 5]); //=> [] */ var aperture = _curry2(_dispatchable('aperture', _xaperture, _aperture));
+ 53 other calls in file
Ai Example
1 2 3 4
const R = require("ramda"); const pairs = R.aperture(2, [1, 2, 3, 4, 5]); console.log(pairs); // output: [ [1, 2], [2, 3], [3, 4], [4, 5] ]
In the above example, ramda.aperture is used to create pairs of adjacent elements in an array of numbers. The function takes two arguments: the size of each group and the array to process. In this case, aperture(2, [1, 2, 3, 4, 5]) creates pairs of two adjacent elements in the array, resulting in [[1, 2], [2, 3], [3, 4], [4, 5]].
GitHub: mathiopia/practice
64 65 66 67 68 69 70
// ), // R.prop("howManyCats") // )(cats) // ); console.log( R.aperture(1, [1,2,3,4]) )
+ 2 other calls in file
4 5 6 7 8 9 10 11 12 13 14
R.sort((a, b) => a - b), (arr) => [0, ...arr, R.last(arr) + 3] )(data) const countJoltageDiffs = R.pipe( R.aperture(2), R.map(([a, b]) => b - a), R.countBy(R.identity), (counts) => counts["1"] * counts["3"] )
GitHub: cberube/AoC-2022
5 6 7 8 9 10 11 12 13 14 15
const dataPath = path.join(__dirname, process.argv[2]) const data = inputTools.loadInputFile(dataPath) function detectMarker(data) { /* const words = R.aperture(4, data) const uniqueCounts = R.compose( R.add(4), R.findIndex(R.equals(4)), R.map(R.compose(R.length, R.uniq)),
GitHub: VesaLahd/aoc2022
49 50 51 52 53 54 55 56 57 58 59
R.compose( lineComponents, R.map(R.last) ) ])), R.aperture(2) ) const walledCave = R.compose( R.reduce((acc, index) => R.set(R.lensIndex(index), '#', acc), cave),
+ 2 other calls in file
ramda.clone is the most popular function in ramda (30311 examples)