How to use the groupBy function from ramda
Find comprehensive JavaScript ramda.groupBy code examples handpicked from public code repositorys.
ramda.groupBy is a function provided by the Ramda library that groups a list of values into a new object or array, based on a provided grouping function.
165 166 167 168 169 170 171 172 173 174 175 176
AND p."publishedAt" IS NOT NULL `); publishIfExists.audit = (properties) => (log) => { const promiseArr = []; const datasets = groupBy(c => c.acteeId, properties); for (const acteeId of Object.keys(datasets)) { promiseArr.push(log('dataset.update.publish', { acteeId }, { properties: datasets[acteeId].filter(p => p.name).map(p => p.name).sort()
+ 59 other calls in file
56 57 58 59 60 61 62 63 64 65
R.groupBy(R.prop("linter")), R.converge( R.zipWith((k, v) => ({ [k]: R.pipe( // then group by the file R.groupBy(R.prop("file")), R.converge( R.zipWith((k, v) => ({ // for each file, get the location separated by semi colon [k]: v.map((x) => x.location).join(";"),
+ 4 other calls in file
How does ramda.groupBy work?
ramda.groupBy is a function provided by the Ramda library that takes in a list of values and a grouping function, and returns a new object or array containing the groups of values. The grouping function is applied to each element in the list, and returns a key or value that is used to group the elements. If the grouping function returns a primitive value (such as a string or number), the groups are represented as an object with keys corresponding to the group values, and values corresponding to arrays of the grouped elements. If the grouping function returns an object or array, the groups are represented as an array of objects, where each object has a key or value property corresponding to the group value, and a values property containing the array of grouped elements. The resulting groups can be used to perform operations such as counting the number of elements in each group, or mapping over the elements in each group to transform them. Overall, ramda.groupBy provides a flexible and powerful way to group and manipulate data in a functional programming style.
GitHub: hakantunc/hyp-down
45 46 47 48 49 50 51 52 53 54
} var data = JSON.parse(body); var notes = R.compose( R.mapObjIndexed((v, k, o) => R.sortWith([R.ascend(R.prop('date'))], v)), R.groupBy(o => o.source), R.map(o => ({ date: new Date(o.updated), title: o.document.title, source: o.target[0].source,
73 74 75 76 77 78 79 80 81 82 83
transl }) } mkQueue(queueSize).addAll(errors_.map((inputElement, inputElementIndex) => async jobIndex => { mapper(output, inputElement, inputElementIndex, doms[jobIndex]) })) output_ = R.groupBy(R.prop('kanji'), output) output_ = R.map(xs => R.uniq(xs.map(x => x.transl).flat().filter(x => x)), output_) output_ = R.toPairs(output_) output_ = output_.map(([kanji, transl]) => ({ kanji, transl })) output_ = output_.filter(x => !R.isEmpty(x.transl))
Ai Example
1 2 3 4 5 6 7 8 9 10 11 12 13
const R = require("ramda"); const myData = [ { name: "Alice", age: 25 }, { name: "Bob", age: 30 }, { name: "Charlie", age: 25 }, { name: "Dave", age: 35 }, ]; const groupByAge = R.groupBy(R.prop("age")); const groups = groupByAge(myData); console.log(groups);
In this example, we use ramda.groupBy to group a list of objects, myData, by the 'age' property. We define a grouping function, groupByAge, using the R.prop function provided by Ramda to extract the 'age' property from each object. We then call the groupByAge function on the myData list to generate the groups, which are represented as an object with keys corresponding to the unique ages in the list. The values of the object are arrays containing the objects in the original list that have the corresponding age. The resulting groups can be used to perform further operations or transformations on the data, such as counting the number of objects in each group. Note that in order to use ramda.groupBy, you need to have the Ramda library installed and imported in your application.
253 254 255 256 257 258 259 260 261 262 263 264
exports.getOperatorsWithMinPrice = getOperatorsWithMinPrice; var getFoodsWithMinPrice = function getFoodsWithMinPrice() { return (0, _reselect.createSelector)(getOffersFromPrices(), getQueryID, _selectors3.getQuery, function (offers, queryID, query) { var groupedByFood = R.groupBy(R.prop('food'), R.concat(offers, getOffersListFromSearchMemory(queryID))); return R.map(function (_ref16) { var code = _ref16.code; return { code: code,
+ 125 other calls in file
10 11 12 13 14 15 16 17 18 19 20 21 22
const airdropUsers = require(airdropUserPath) const serviceAccount = require(configPath) const allUsers = [...privateUsers, ...publicUsers, ...airdropUsers] function merge (allUsers) { const groupByUID = R.groupBy(user => user.uid) const concatValues = (k, l, r) => k == 'claim_periods' ? R.concat(l, r) : r const reducePeriods = R.reduce(R.mergeWithKey(concatValues), {})
129 130 131 132 133 134 135 136 137 138
return R.pipe( R.map((args) => { expect(args.length).to.equal(1); return args[0]; }), R.groupBy((msg) => msg.action) )(sinonSpy.args); } const messages = groupTelemetryCallsByAction(
+ 152 other calls in file
GitHub: jcla1/AdventOfCode
10 11 12 13 14 15 16 17 18 19 20 21
const isValidPart1 = ([low, high, lett, pw]) => { // example p = ['1', '3', 'a', 'abcde'] const letterCounts = R.compose( R.map(R.length), R.groupBy(R.identity))(pw); return parseInt(low) <= letterCounts[lett] && letterCounts[lett] <= parseInt(high); };
+ 2 other calls in file
GitHub: dqmmpb/define-demos
518 519 520 521 522 523 524 525 526 527 528 529
// merge log(R.merge(l3, l4)); log(R.fromPairs([['a', 1], ['b', 2], ['c', 3]])); var byGrade = R.groupBy((student) => { var score = student.score; return score < 65 ? 'F' : score < 70 ? 'D' : score < 80 ? 'C' :
+ 9 other calls in file
7373 7374 7375 7376 7377 7378 7379 7380 7381 7382
* @return {Object} An object with the output of `fn` for keys, mapped to arrays of elements * that produced that key when passed to `fn`. * @see R.transduce * @example * * var byGrade = R.groupBy(function(student) { * var score = student.score; * return score < 65 ? 'F' : * score < 70 ? 'D' : * score < 80 ? 'C' :
+ 17 other calls in file
GitHub: jgrodriguez9/planex-api
918 919 920 921 922 923 924 925 926 927
section: survey.section, sectionsQ: [], questions: [], }; const bySectionsQs = R.groupBy((question) => { return question.is_page ? "sections" : question.page_id ? "sectionQ"
54 55 56 57 58 59 60 61 62 63
transactionBenificiaries: true, }, }); return R.pipe( R.groupBy((u) => u.doneBy), R.map((v) => R.reduce( (acc, item) => acc + item.transactionBenificiaries[0].amount, 0,
71 72 73 74 75 76 77 78 79 80
for (let i = 0; i < pages.length; i++) { const hlines = hlinesPaged[i]; const texts = textsPaged[i]; groups.push( R.groupBy((text) => R.findIndex((hline) => text.y < hline)(hlines), texts) ); } // Combine groups below last hline on a page and above first hline on next page
+ 3 other calls in file
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
* @return {Object} An object with the output of `fn` for keys, mapped to arrays of elements * that produced that key when passed to `fn`. * @see R.reduceBy, R.transduce * @example * * const byGrade = R.groupBy(function(student) { * const score = student.score; * return score < 65 ? 'F' : * score < 70 ? 'D' : * score < 80 ? 'C' :
+ 3 other calls in file
428 429 430 431 432 433 434 435 436 437
(regularMeasures.length ? [ this.withCubeAliasPrefix('main', () => this.regularMeasuresSubQuery(regularMeasures)) ] : []) .concat( R.pipe( R.groupBy(m => m.cube().name), R.toPairs, R.map( ([keyCubeName, measures]) => this.withCubeAliasPrefix(`${keyCubeName}_key`, () => this.aggregateSubQuery(keyCubeName, measures)) )
GitHub: VesaLahd/aoc2022
46 47 48 49 50 51 52 53 54 55
const tailPosition = R.curry((knots, instructions) => R.compose( R.length, R.flatten, R.values, R.map(R.compose(R.uniq, R.map(R.last))), R.groupBy(R.head), R.map(R.last), R.scan(moveRopeKnots, Array(knots).fill([0,0])) )(instructions))
ramda.clone is the most popular function in ramda (30311 examples)