How to use the groupBy function from ramda

Find comprehensive JavaScript ramda.groupBy code examples handpicked from public code repositorys.

ramda.groupBy is a function provided by the Ramda library that groups a list of values into a new object or array, based on a provided grouping function.

165
166
167
168
169
170
171
172
173
174
175
176
AND p."publishedAt" IS NOT NULL
`);


publishIfExists.audit = (properties) => (log) => {
  const promiseArr = [];
  const datasets = groupBy(c => c.acteeId, properties);


  for (const acteeId of Object.keys(datasets)) {
    promiseArr.push(log('dataset.update.publish', { acteeId }, {
      properties: datasets[acteeId].filter(p => p.name).map(p => p.name).sort()
fork icon50
star icon43
watch icon9

+ 59 other calls in file

56
57
58
59
60
61
62
63
64
65
R.groupBy(R.prop("linter")),
R.converge(
  R.zipWith((k, v) => ({
    [k]: R.pipe(
      // then group by the file
      R.groupBy(R.prop("file")),
      R.converge(
        R.zipWith((k, v) => ({
          // for each file, get the location separated by semi colon
          [k]: v.map((x) => x.location).join(";"),
fork icon2
star icon5
watch icon0

+ 4 other calls in file

How does ramda.groupBy work?

ramda.groupBy is a function provided by the Ramda library that takes in a list of values and a grouping function, and returns a new object or array containing the groups of values. The grouping function is applied to each element in the list, and returns a key or value that is used to group the elements. If the grouping function returns a primitive value (such as a string or number), the groups are represented as an object with keys corresponding to the group values, and values corresponding to arrays of the grouped elements. If the grouping function returns an object or array, the groups are represented as an array of objects, where each object has a key or value property corresponding to the group value, and a values property containing the array of grouped elements. The resulting groups can be used to perform operations such as counting the number of elements in each group, or mapping over the elements in each group to transform them. Overall, ramda.groupBy provides a flexible and powerful way to group and manipulate data in a functional programming style.

45
46
47
48
49
50
51
52
53
54
}
var data = JSON.parse(body);
var notes
  = R.compose(
      R.mapObjIndexed((v, k, o) => R.sortWith([R.ascend(R.prop('date'))], v)),
      R.groupBy(o => o.source),
      R.map(o => ({
        date: new Date(o.updated),
        title: o.document.title,
        source: o.target[0].source,
fork icon0
star icon6
watch icon0

73
74
75
76
77
78
79
80
81
82
83
    transl
  })
}
mkQueue(queueSize).addAll(errors_.map((inputElement, inputElementIndex) => async jobIndex => { mapper(output, inputElement, inputElementIndex, doms[jobIndex]) }))


output_ = R.groupBy(R.prop('kanji'), output)
output_ = R.map(xs => R.uniq(xs.map(x => x.transl).flat().filter(x => x)), output_)
output_ = R.toPairs(output_)
output_ = output_.map(([kanji, transl]) => ({ kanji, transl }))
output_ = output_.filter(x => !R.isEmpty(x.transl))
fork icon0
star icon4
watch icon2

Ai Example

1
2
3
4
5
6
7
8
9
10
11
12
13
const R = require("ramda");

const myData = [
  { name: "Alice", age: 25 },
  { name: "Bob", age: 30 },
  { name: "Charlie", age: 25 },
  { name: "Dave", age: 35 },
];

const groupByAge = R.groupBy(R.prop("age"));

const groups = groupByAge(myData);
console.log(groups);

In this example, we use ramda.groupBy to group a list of objects, myData, by the 'age' property. We define a grouping function, groupByAge, using the R.prop function provided by Ramda to extract the 'age' property from each object. We then call the groupByAge function on the myData list to generate the groups, which are represented as an object with keys corresponding to the unique ages in the list. The values of the object are arrays containing the objects in the original list that have the corresponding age. The resulting groups can be used to perform further operations or transformations on the data, such as counting the number of objects in each group. Note that in order to use ramda.groupBy, you need to have the Ramda library installed and imported in your application.

253
254
255
256
257
258
259
260
261
262
263
264


exports.getOperatorsWithMinPrice = getOperatorsWithMinPrice;


var getFoodsWithMinPrice = function getFoodsWithMinPrice() {
  return (0, _reselect.createSelector)(getOffersFromPrices(), getQueryID, _selectors3.getQuery, function (offers, queryID, query) {
    var groupedByFood = R.groupBy(R.prop('food'), R.concat(offers, getOffersListFromSearchMemory(queryID)));
    return R.map(function (_ref16) {
      var code = _ref16.code;
      return {
        code: code,
fork icon0
star icon3
watch icon4

+ 125 other calls in file

10
11
12
13
14
15
16
17
18
19
20
21
22
const airdropUsers = require(airdropUserPath)
const serviceAccount = require(configPath)
const allUsers = [...privateUsers, ...publicUsers, ...airdropUsers]


function merge (allUsers) {
  const groupByUID = R.groupBy(user => user.uid)


  const concatValues = (k, l, r) => k == 'claim_periods' ? R.concat(l, r) : r


  const reducePeriods = R.reduce(R.mergeWithKey(concatValues), {})
fork icon0
star icon1
watch icon0

129
130
131
132
133
134
135
136
137
138
  return R.pipe(
    R.map((args) => {
      expect(args.length).to.equal(1);
      return args[0];
    }),
    R.groupBy((msg) => msg.action)
  )(sinonSpy.args);
}

const messages = groupTelemetryCallsByAction(
fork icon0
star icon0
watch icon1

+ 152 other calls in file

10
11
12
13
14
15
16
17
18
19
20
21


const isValidPart1 = ([low, high, lett, pw]) => {
  // example p = ['1', '3', 'a', 'abcde']
  const letterCounts = R.compose(
      R.map(R.length),
      R.groupBy(R.identity))(pw);


  return parseInt(low) <= letterCounts[lett] &&
      letterCounts[lett] <= parseInt(high);
};
fork icon0
star icon0
watch icon0

+ 2 other calls in file

518
519
520
521
522
523
524
525
526
527
528
529
// merge
log(R.merge(l3, l4));


log(R.fromPairs([['a', 1], ['b', 2], ['c', 3]]));


var byGrade = R.groupBy((student) => {
  var score = student.score;
  return score < 65 ? 'F' :
    score < 70 ? 'D' :
      score < 80 ? 'C' :
fork icon0
star icon0
watch icon0

+ 9 other calls in file

7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
* @return {Object} An object with the output of `fn` for keys, mapped to arrays of elements
*         that produced that key when passed to `fn`.
* @see R.transduce
* @example
*
*      var byGrade = R.groupBy(function(student) {
*        var score = student.score;
*        return score < 65 ? 'F' :
*               score < 70 ? 'D' :
*               score < 80 ? 'C' :
fork icon0
star icon0
watch icon0

+ 17 other calls in file

918
919
920
921
922
923
924
925
926
927
  section: survey.section,
  sectionsQ: [],
  questions: [],
};

const bySectionsQs = R.groupBy((question) => {
  return question.is_page
    ? "sections"
    : question.page_id
    ? "sectionQ"
fork icon0
star icon0
watch icon0

54
55
56
57
58
59
60
61
62
63
    transactionBenificiaries: true,
  },
});

return R.pipe(
  R.groupBy((u) => u.doneBy),
  R.map((v) =>
    R.reduce(
      (acc, item) => acc + item.transactionBenificiaries[0].amount,
      0,
fork icon0
star icon0
watch icon0

71
72
73
74
75
76
77
78
79
80
for (let i = 0; i < pages.length; i++) {
  const hlines = hlinesPaged[i];
  const texts = textsPaged[i];

  groups.push(
    R.groupBy((text) => R.findIndex((hline) => text.y < hline)(hlines), texts)
  );
}

// Combine groups below last hline on a page and above first hline on next page
fork icon0
star icon0
watch icon0

+ 3 other calls in file

3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
* @return {Object} An object with the output of `fn` for keys, mapped to arrays of elements
*         that produced that key when passed to `fn`.
* @see R.reduceBy, R.transduce
* @example
*
*      const byGrade = R.groupBy(function(student) {
*        const score = student.score;
*        return score < 65 ? 'F' :
*               score < 70 ? 'D' :
*               score < 80 ? 'C' :
fork icon0
star icon0
watch icon2

+ 3 other calls in file

428
429
430
431
432
433
434
435
436
437
(regularMeasures.length ? [
  this.withCubeAliasPrefix('main', () => this.regularMeasuresSubQuery(regularMeasures))
] : [])
  .concat(
    R.pipe(
      R.groupBy(m => m.cube().name),
      R.toPairs,
      R.map(
        ([keyCubeName, measures]) => this.withCubeAliasPrefix(`${keyCubeName}_key`, () => this.aggregateSubQuery(keyCubeName, measures))
      )
fork icon0
star icon0
watch icon0

46
47
48
49
50
51
52
53
54
55
const tailPosition = R.curry((knots, instructions) => R.compose(
  R.length,
  R.flatten,
  R.values,
  R.map(R.compose(R.uniq, R.map(R.last))),
  R.groupBy(R.head),
  R.map(R.last),
  R.scan(moveRopeKnots, Array(knots).fill([0,0]))
)(instructions))

fork icon0
star icon0
watch icon0

Other functions in ramda

Sorted by popularity

function icon

ramda.clone is the most popular function in ramda (30311 examples)